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Abstract

This work presents exact dynamic solutions to piezoelectric (PZT) smart beams including peel stresses. The govern-

ing equations of partial differential forms are firstly derived for a PZT smart beam made of the identical adherends,

and then general solutions of the governing equations are studied. The analytical solutions are applied to a cantilever

beam with a partially bonded PZT patch to the fixed end. For the given boundary conditions, exact solutions of the

steady state motions are obtained. Based on the exact solutions, frequency spectra, natural frequencies, normal mode

shapes, harmonic responses of the shear and peel stresses are discussed for the PZT actuator. The details of the nu-

merical results and sensing electric charges will be presented in Part II of this work. The exact dynamic solutions can be

directly applied to a PZT bimorph bender. To compare with the classic shear lag model whose numerical demon-

strations will be given in Part II, the related equations are also derived for the shear lag rod model and shear lag beam

model.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Dynamic control for flexible smart structures has drawn a significant attention in the past decades. In

our previous work on exact static solutions (Luo and Tong, 2002a,b), it was shown that piezoelectric (PZT)

beam models taking into account both shear and peel stresses in adhesive are more accurate than the

classical shear lag model, especially for flexible structures. To better understand dynamic behaviors of
smart structures, we will develop exact solutions for dynamics of piezoelectric smart beams considering peel

stresses in this work.

To obtain the exact dynamic solutions, we consider a smart beam in Fig. 1, whose composite part is

made of the identical substrates or adherends. This special type of piezoelectric devices is called the PZT
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Fig. 1. A smart beam with a bonded PZT patch.
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bimorphs, which have been widely used as displacement transducers or actuators in precise sub-micron

increments and in active vibration or noise control.

Smits et al. (1991) presented an extensive review for the PZT bimorph applications, in which, they
derived the constitutive equations for the PZT bimorph bender using the internal energy density of in-

finitesimal volume elements in thermodynamic equilibrium in the presence of a voltage on the electrodes.

Kugel et al. (1998) developed a new type of bimorph-based piezoelectric air transducer with a frequency

range of 200–1000 Hz. Morris and Forster (2000) discussed the optimization of a circular piezoelectric

bimorph for a micro-pump driver. Lim et al. (2001) studied three-dimensional responses for parallel piezo-

electric bimorphs. In these investigations, adhesive layer was not taken into account in the formulations of

all models and peel stress along through the thickness direction was not considered.

This paper is not intended to study design and applications of PZT bimorphs, and instead focuses on
developing analytical solutions of dynamics applicable to PZT bimorphs. In the demonstrated examples, it

can be deemed as the simplest bimorph that is formed by bonding a PZT patch to the top surface of a host

beam and the obtained dynamic solutions can be tailored to study the dynamic and static analysis of a PZT

bimorph bender.

Crawley and de Luis (1987) developed a theoretical framework for a smart beam with bonded or em-

bedded PZT patches. In their dynamic analysis, they considered the case for which the PZT patches were

assumed to be very thin compared with the host beam, and thus the static results of shear stresses and the

actuated equivalent forces can be directly used as the excitation functions by ignoring the PZTs� mass.
Gibbs and Fuller (1992) presented an approximate analytical model for the excitation of a thin beam, in

which no adhesive layer was considered and the actuated equivalent forces were discussed. Irschik et al.

(1999) presented a new class of shaped piezoelectric sensors for deflection measurements. Rizet et al. (2000)

developed an active control system for controlling the flexural vibration of a smart beam, whose results

indicated that the simple analytical model was not very accurate and the first two resonant frequencies

predicted by the finite element method were lower than those of the experiment.

A dynamic smart beam model will be presented on the basis of our static model by including the PZT

mass. Using the concept of equivalent forces, we will also develop an approximate solution procedure for
the dynamic analysis of PZT smart beams by considering peel stress distributions in Part II, in which, the

application and limitations of the dynamic equivalent forces will be investigated by comparing the exact

dynamic solutions with the approximate ones.

2. Motion equations and solutions of a smart beam

Consider a smart beam with a bonded PZT patch as shown in Fig. 1. It is assumed that the patch and

host beam have identical material and geometrical properties.

2.1. Non-dimensional motion equations

To derive non-dimensional forms of dynamic equations for the PZT patch and the host beam, we
introduce the following non-dimensional parameters:
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9>>>>>>>=
>>>>>>>;
ð1Þ
Some of the above parameters are different from those defined in our static analysis (Luo and Tong,

2002a,b) for convenient formulations. In Eq. (1), Eh is the elastic modulus of the adherends; m and q are the

density, mass per unit length and per unit volume respectively; Lp is the length of the PZT patch; Ea and Ga

are the elastic and shear moduli of the adhesive layer. Definitions of remaining symbols are given in Figs. 1

and 2. The subscript n in all equations refers to non-dimensional quantities.
Referring to Fig. 2 and Eq. (1), we have dynamic equations:
rh
oNn1

on
þ sn ¼ mn

o2un1
ot2n

; rh
oQn1

on
þ rn ¼ mn

o2wn1

ot2n
;

oMn1
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þ 1

2
sn � Qn1 ¼ 0 ð2Þ

rh
oNnh

on
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; rh
oQnh

on
� rn ¼ mn
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oMnh
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þ 1

2
sn � Qnh ¼ 0 ð3Þ
On the basis of the Euler–Bernoulli beam theory (Timoshenko and Gere, 1972), the piezoelectricity theory

(Tiersten, 1969) and the model of adhesive joints developed by Goland and Reissner (1944), the constitutive
relations of the PZT patch, the host beam, which may also be a PZT material, and the adhesive layer are:
dx
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ta
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τ
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Free body diagrams of the infinitesimal elements. (a) PZT infinitesimal element, (b) the adhesive element and (c) host beam

simal element.
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9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

ð4Þ
where e31 is a coupling piezoelectric constant; Vh and V1 are voltages. In Eqs. (2)–(4), effects of the rotational
inertia and shear strains are neglected in light of the Euler–Bernoulli beam theory and the unit width of the
beam cross section with a rectangular shape is assumed.

Substituting Eq. (4) into Eqs. (2) and (3), we can obtain the motion equations:
Enhr2h
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9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

ð5Þ
2.2. General solutions to partial differential forms of the motion equations

To solve partial differential equations shown in Eq. (5), we first simplify it using the following trans-

formations:
2us ¼ unh þ un1; 2Ns ¼ Nnh þ Nn1; 2ws ¼ wnh � wn1; 2Qs ¼ Qnh � Qn1; 2Ms ¼ Mnh �Mn1

2ua ¼ unh � un1; 2Na ¼ Nnh � Nn1; 2wa ¼ wnh þ wn1; 2Qa ¼ Qnh þ Qn1; 2Ma ¼ Mnh þMn1

2Vs ¼ Vh þ V1; 2Va ¼ Vh � V1

9=
;

ð6Þ

By utilizing the above transformations, Eqs. (4) and (5) become:
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on
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Gah
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12
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on2
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9>>=
>>; ð8Þ
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ð10Þ
The uncoupled differential equation (8) can be easily solved and the coupled equation (10) can also be

solved analytically. Once Eqs. (8) and (10) are solved, the dynamic shear and peel stresses are obtained

using Eqs. (7) and (9), and the dynamic solutions to extensional and flexural motions of the PZT and the

host beam can be obtained through the transformations defined in Eq. (6).

When the harmonic motions are assumed, solutions to Eq. (8) become:
us ¼ UsðnÞ sinXtn; ws ¼ WsðnÞ sinXtn ð11Þ

and the vibration amplitudes UsðnÞ and WsðnÞ can be found:
Us ¼ As1 sin bs1n þ As2 cos bs1n ð12Þ

Ws ¼ ðBs1 sinh ben þ Bs2 cosh benÞ sin ben þ ðBs3 sinh ben þ Bs4 cosh benÞ cos ben; when x < as ð13Þ

Ws ¼ ðBs1n
3 þ Bs2n

2 þ Bs3n þ Bs4Þ; when x ¼ as ð14Þ

Ws ¼ ðBs1 sinh bs2n þ Bs2 cosh bs2n þ Bs3 sin bs2n þ Bs4 cos bs2nÞ; when x > as ð15Þ

where
bs1 ¼
x
au

; bs2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jx2 � a2s j4

p
ffiffiffiffiffi
aw

p ; be ¼
ffiffiffi
2

p

2
bs2; au ¼

ffiffiffiffiffiffiffiffiffiffiffi
Enhr2h
mT

s
; aw ¼

ffiffiffiffiffiffiffiffiffiffiffi
Enhr4h
12mT

s
; as ¼

ffiffiffiffiffiffiffiffi
2rra
mT

s
ð16Þ
To solve Eq. (10), we assume that:
ua ¼ UaðnÞ sinXtn ¼ Aae
bn sinXtn; wa ¼ WaðnÞ sinXtn ¼ Bae

bn sinXtn ð17Þ

Substituting Eq. (17) into Eq. (10) yields the following characteristic equations:
½a2ub
2 þ ðx2 � a2aÞ	Aa �

rh
2

ba2aBa ¼ 0

rh
2

ba2aAa � a2wb
4 � r2h

4
a2ab

2 þ x2

� �	 

Ba ¼ 0

9>=
>; ð18Þ
The condition ensuring non-trivial solutions to ua and wa requires:
k3 � ½b2
aw þ ðb2

au � b2
xuÞ	k

2 � ðb2
xw þ b2

awb
2
xuÞk þ b2

xwðb
2
au � b2

xuÞ ¼ 0 ð19Þ
In Eqs. (18) and (19),
k ¼ b2; aa ¼

ffiffiffiffiffiffiffiffi
2rsa
mT

s
; baw ¼ rhaa

2aw
; bau ¼

aa

au
; bxu ¼

x
au

; bxw ¼ x
aw

ð20Þ
It can be shown that, the three roots of k in Eq. (19) are all real numbers in normal cases of structural

geometry, mass density and material properties. The solution forms of amplitudes Ua and Wa are:
Ua ¼ Aa1 sinh b1n þ Aa2 cosh b1n þ Aa3 sinh b2n þ Aa4 cosh b2n þ Aa5 sin b3n þ Aa6 cos b3n
Wa ¼ Ba1 sinh b1n þ Ba2 cosh b1n þ Ba3 sinh b2n þ Ba4 cosh b2n þ Ba5 sin b3n þ Ba6 cos b3n
when x < aa

9=
; ð21Þ
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Ua ¼ Aa1 sinh b1n þ Aa2 cosh b1n þ Aa3 sin b2n þ Aa4 cos b2n þ Aa5n þ Aa6

Wa ¼ Ba1 sinh b1n þ Ba2 cosh b1n þ Ba3 sin b2n þ Ba4 cos b2n þ Ba5n þ Ba6

when x ¼ aa

9=
; ð22Þ

Ua ¼ Aa1 sinh b1n þ Aa2 cosh b1n þ Aa3 sin b2n þ Aa4 cos b2n þ Aa5 sin b3n þ Aa6 cos b3n
Wa ¼ Ba1 sinh b1n þ Ba2 cosh b1n þ Ba3 sin b2n þ Ba4 cos b2n þ Ba5 sin b3n þ Ba6 cos b3n
when x > aa

9=
; ð23Þ
where bi ¼
ffiffiffiffiffiffiffi
jkij

p
, ði ¼ 1; 2; 3Þ; ki are the roots of Eq. (19); Aai and Bai ði ¼ 1; 2; . . . ; 6Þ are integration

constants to be determined.

It can be seen that, the solution forms depend on the frequencies of the applied voltages or loadings,

the material properties and the geometries of the adhesive and adherends. For example, assume the ma-

terial properties and geometric parameters of the adherends and the adhesive to be: m ¼ qAh ¼ qh ¼
7800
 0:001 kg/m; Ea ¼ 3:00 Gpa; Ga ¼ 1:07 Gpa and ta ¼ 0:1 mm, we have:
aa ¼

ffiffiffiffiffiffiffiffi
2rsa
mT

s
¼ 1656379 ð1=sÞ
If x > aa, it is related to the vibrations with very high frequencies. In practice, the lower frequencies are

normally concerned. Therefore, we only consider dynamic solutions in the case that x < aa; in this case, x
is also less than as. The solutions are thus given by Eqs. (12), (13) and (21). The integration constants in
these equations can be determined by the boundary conditions. To validate numerically the solution and

study the PZT bimorph bender, we consider a host beam with the partially bonded PZT patch as shown in

Fig. 1.
3. Exact solutions of a cantilever beam with the bonded PZT patch to the fixed end

3.1. Boundary conditions

The different expressions of motion equations for each section of the smart beam in Fig. 1 require the

boundary conditions for each part. The boundary conditions of Section II are:
n ¼ 0 :
dUnhII

dn
¼ eN n ¼ ap ¼

L� Lp

Lp
:
dUnhII

dn
¼ eF

d2WnhII

dn2
¼ �eM

d2WnhII

dn2
¼ 0

d3WnhII

dn3
¼ �eQ

d3WnhII

dn3
¼ �eP

9>>>>>>>=
>>>>>>>;

ð24Þ
The boundary conditions of Section I are:
n ¼ 0 : Un1 ¼ 0; Unh ¼ 0 n ¼ 1 :
dUn1

dn
¼ ep;

dUnh

dn
¼ eN

Wn1 ¼ 0; Wnh ¼ 0
d2Wn1

dn2
¼ 0;

d2Wnh

dn2
¼ �eM

dWn1

dn
¼ 0;

dWnh

dn
¼ 0

d3Wn1

dn3
¼ 6sn

Enhr3h
;

d3Wnh

dn3
¼ 6sn

Enhr3h
� eQ

9>>>>>>>=
>>>>>>>;

ð25Þ
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According to the relations defined in Eqs. (5) and (6), we have:
n ¼ 0 : Us ¼ 0 n ¼ 1 :
dUs

dn
¼ 1

2
ðeN þ epÞ

Ws ¼ 0
d2Ws

dn2
¼ � 1

2
eM

dWs

dn
¼ 0

d3Ws

dn3
¼ � 1

2
eQ

9>>>>>>>=
>>>>>>>;

ð26Þ

n ¼ 0 : Ua ¼ 0 n ¼ 1 :
dUa

dn
¼ 1

2
ðeN � epÞ

Wa ¼ 0
d2Wa

dn2
¼ � 1

2
eM

dWa

dn
¼ 0

d3Wa

dn3
¼ 6sn

Enhr3h
� 1

2
eQ

9>>>>>>>=
>>>>>>>;

ð27Þ
In the above equations:
ep ¼
ee
rh
; ee ¼ � e31V1

Ehh
; eN ¼ Nint

Enhrh
; eM ¼ 12Mint

Enhr3h
; eQ ¼ 12Qint

Enhr3h
ð28Þ

eF ¼ F0n
Enhrh

; eP ¼ 12P0n
Ehr3h

ð29Þ
where ee is the electrically induced strain of the PZT and V1 is the magnitude of the applied voltage; Nint,

Mint, and Qint are the amplitudes of non-dimensional internal forces at the intersection between Sections I

and II of the host beam; F0n and P0n are the amplitudes of non-dimensional applied forces at the free end of
the host beam at which the applied bending moment is assumed to be zero as our numerical results show

that the frequency spectra in terms of sensing electric charge caused by the bending moment are similar to

ones for the applied shear force.
It can be seen that the problem becomes solving the homogeneous differential equation with the inhomo-

geneous boundary conditions. Performing proper transformations, we may obtain the inhomogeneous

differential equations with the homogeneous boundary conditions (Tiersten, 1969), and then the exact

solutions, expressing in forms of the Fourier series normally, are the sum of the particular solutions ex-

panded in a series of characteristic functions by the inhomogeneous excitations and the complementary

functions shown in Eqs. (12)–(15), (21)–(23), and (30), (31) given as below. With the increase of time,

motions defined by the complementary functions will vanish because of structural damping and the par-

ticular solutions or steady state motions of the structure will remain.
Alternatively, we may substitute the inhomogeneous boundary conditions into the complementary

functions to find the integration constants and then the steady state solutions are also obtained as follows.

3.2. Solutions of Section II

The dynamic solutions to Section II of the smart beam (Thomson, 1998) are:
unhII ¼ UnhIIðnÞ sinXtn; wnhII ¼ WnhIIðnÞ sinXtn ð30Þ

UnhII ¼ Ah1 sin bs1n þ Ah2 cos bs1n
WnhII ¼ ðBh1 sinh bhn þ Bh2 cosh bhn þ Bh3 sin bhn þ Bh4 cos bhnÞ

where; bh ¼
ffiffiffiffiffi
x
aw

r
:

9>>=
>>; ð31Þ
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Substituting the boundary conditions of Section II shown in Eq. (24) into Eq. (31), we find:
UnhII ¼
1

bs1 sin bs1ap
½eN cos bs1ðap � nÞ � eF cos bs1n	

WnhII ¼
Dh1

Dh
ðsinh bhn þ sin bhnÞ þ

Dh2

Dh
ðcosh bhn þ cos bhnÞ þ eM

cos bhn

b2
h

þ eQ
sin bhn

b3
h

9>>=
>>; ð32Þ
where
Dh1 ¼
1

b3
h

½bheMðsinh bhap cos bhap þ cosh bhap sin bhapÞ þ eQðsinh bhap sin bhap

� cosh bhap cos bhap þ 1Þ þ eP ðcosh bhap � cos bhapÞ	
Dh2 ¼

1

b3
h

½�bheMðsinh bhap sin bhap þ cosh bhap cos bhap � 1Þ þ eQðsinh bhap cos bhap

� cosh bhap sin bhapÞ � eP ðsinh bhap � sin bhapÞ	
Dh ¼ 2ðcosh bhap cos bhap � 1Þ

9>>>>>>>>=
>>>>>>>>;

ð33Þ
3.3. Solutions of Section I

Substituting the boundary conditions of Section I shown in Eq. (26) into Eqs. (12) and (13), we have:
Us ¼
sin bs1n

bs1 cos bs1

1

2
ðeN þ epÞ

Ws ¼
Ds1

Ds
ðsinh ben sin benÞ þ

Ds2

Ds
ðcosh ben sin ben � sinh ben cos benÞ

9>>=
>>; ð34Þ
where
Ds1 ¼
1

b3
e

2be cosh be cos be � eM
2


 �
� ðsinh be cos be þ cosh be sin beÞ � eQ

2


 �h i

Ds2 ¼
1

b3
e

� beðsinh be cos be � cosh be sin beÞ � eM
2


 �
þ cosh be cos be � eQ

2


 �h i
Ds ¼ cosh 2be þ cos 2be

9>>>>=
>>>>;

ð35Þ
To solve Eq. (21), we firstly derive the relations of Aai and Bai ði ¼ 1; 2; . . . ; 6Þ, which can be obtained by

substituting Eq. (21) into the first formulation of Eq. (10):
Aa1 ¼ K1Ba2; Aa3 ¼ K2Ba4; Aa5 ¼ K3Ba6

Aa2 ¼ K1Ba1; Aa4 ¼ K2Ba3; Aa6 ¼ �K3Ba5

�
ð36Þ
where
K1 ¼ b1K10 ¼
rh
2

b1b
2
au

b2
1 � ðb2

au � b2
xuÞ

K2 ¼ b2K20 ¼
rh
2

b2b
2
au

b2
2 � ðb2

au � b2
xuÞ

K3 ¼ b3K30 ¼
rh
2

b3b
2
au

b2
3 þ ðb2

au � b2
xuÞ

9>>>>>>>>=
>>>>>>>>;

ð37Þ
Substituting the boundary conditions at n ¼ 0 shown in Eq. (27) into Eq. (21), and considering the relations
shown in Eq. (36), we have:
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Ua ¼ Ba2ðK1 sinh b1n � K3 sin b3nÞ þ Ba4ðK2 sinh b2n � K3 sin b3nÞ
þBa5ðK1K31 cosh b1n þ K2K32 cosh b2n � K3 cos b3nÞ

Wa ¼ Ba2ðcosh b1n � cos b3nÞ þ Ba4ðcosh b2n � cos b3nÞ
þBa5ðK31 sinh b1n þ K32 sinh b2n þ sin b3nÞ

9>>=
>>; ð38Þ
where
K31 ¼
b3ðK30 þ K20Þ
b1ðK10 � K20Þ

; K32 ¼
b3ðK30 þ K10Þ
b2ðK20 � K10Þ

ð39Þ
Considering the boundary conditions at n ¼ 1 and the expression of the shear stress shown in Eq. (9), we

can obtain the equations for solving the integration constants Ba2, Ba4 and Ba5, in which the unknown

internal forces of the host beam at the intersection are included:
Ba2ðb2
1K10 cosh b1 � b2

3K30 cos b3Þ þ Ba4ðb2
2K20 cosh b2 � b2

3K30 cos b3Þ
þBa5ðb2

1K10K31 sinh b1 þ b2
2K20K32 sinh b2 þ b2

3K30 sin b3Þ ¼
eN � ep

2
Ba2ðb2

1 cosh b1 þ b2
3 cos b3Þ þ Ba4ðb2

2 cosh b2 þ b2
3 cos b3Þ

þBa5ðb2
1K31 sinh b1 þ b2

2K32 sinh b2 � b2
3 sin b3Þ ¼ � eM

2
Ba2ðKb1 sinh b1 � Kb3 sin b3Þ þ Ba4ðKb2 sinh b2 � Kb3 sin b3Þ

þBa5ðKb1K31 cosh b1 þ Kb2K32 cosh b2 � Kb3 cos b3Þ ¼ � eQ
2

9>>>>>>>>>>=
>>>>>>>>>>;

ð40Þ
where
Kb1 ¼ b1 b2
1 �

12rsa
Enhr3h

K10 þ
rh
2


 �	 


Kb2 ¼ b2 b2
2 �

12rsa
Enhr3h

K20 þ
rh
2


 �	 


Kb3 ¼ b3 b2
3 �

12rsa
Enhr3h

K30 �
rh
2


 �	 


9>>>>>>=
>>>>>>;

ð41Þ
Integration constants Ba2, Ba4 and Ba5 are solved by Eq. (40):
Ba2 ¼
1

Da
DN2

eN � ep
2

þ DM2 � eM
2


 �
þ DQ2 � eQ

2


 �h i
Ba4 ¼

1

Da
DN4

eN � ep
2

þ DM4 � eM
2


 �
þ DQ4 � eQ

2


 �h i
Ba5 ¼

1

Da
DN5

eN � ep
2

þ DM5 � eM
2


 �
þ DQ5 � eQ

2


 �h i

9>>>>>=
>>>>>;

ð42Þ
where Da is the determinant value of the coefficient matrix of Eq. (40) and DNk ðN ¼ N ;M ;Q; k ¼ 2; 4; 5Þ are
determinant values of the corresponding cofactors.

3.4. Exact dynamic solutions of the smart beam

The motion equations of the smart beam we have solved still include the unknown internal forces of the

host beam at the intersection. To determine the unknowns, we consider the continuity and smooth con-

ditions at the intersection:
Unhð1Þ ¼ UnhIIð0Þ; Wnhð1Þ ¼ WnhIIð0Þ;
dWnhð1Þ
dn

¼ dWnhIIð0Þ
dn

ð43Þ
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where
Unhð1Þ ¼ Uað1Þ þ Usð1Þ; Wnhð1Þ ¼ Wað1Þ þ Wsð1Þ;
dWnhð1Þ
dn

¼ dWað1Þ
dn

þ dWsð1Þ
dn

ð44Þ
The expressions of the intersectional displacements can be found by Eqs. (32), (34) and (38), which are

given in Appendix B. Substituting Eqs. (B.1)–(B.3) into the continuity and smooth equations (43), we have:
b11eN þ b12eM þ b13eQ ¼ c1eep þ c1F eF
b21eN þ b22eM þ b23eQ ¼ c2eep þ c2P eP
b31eN þ b32eM þ b33eQ ¼ c3eep þ c3P eP

9=
; ð45Þ
The coefficients in Eq. (45) are given in Appendix B.

The unknown forces at the intersection can be solved by Eq. (45). By substituting the solved unknown

forces into Eqs. (32), (34) and (38), the integration constants are determined, and therefore the steady state

motions of the smart beam are found.

We have mentioned that the proper transformations may be constructed to change the problem of
homogeneous differential equations with the inhomogeneous boundary conditions into that of inhomo-

geneous differential equations with the homogeneous boundary conditions. In doing so, by having the

coefficients of characteristic functions be unlimited, the natural frequencies are obtained, and the charac-

teristic functions are the normal mode shapes.

Based on the solved steady state motions, the frequency spectra can be easily plotted. When the fre-

quency approaches to the resonant frequency, the solution is divergent and thus the natural frequency is

found. The mode shape of each order can be accurately obtained by selecting the frequency very close to the

resonant frequency.
3.5. Exact dynamic solutions tailored to a bimorph bender

The obtained solutions of the cantilever beam with a partially bonded PZT patch to the fixed end can be

tailored to directly solve the PZT double cantilever beam (DCB). When the DCB undergoes pure bending

deformation, it is a PZT bimorph bender, which has been widely used in the area of micro-controls. The

boundary conditions of the DCB can be expressed:
n ¼ 0 : Us ¼ 0 n ¼ 1 :
dUs

dn
¼ eNs þ eps ¼

1

2
ðeNh þ eN1 þ eph þ ep1Þ

Ws ¼ 0
d2Ws

dn2
¼ �eMs ¼ � 1

2
ðeMh � eM1Þ

dWs

dn
¼ 0

d3Ws

dn3
¼ �eQs ¼ � 1

2
ðeQh � eQ1Þ

9>>>>>>>=
>>>>>>>;

ð46Þ

n ¼ 0 : Ua ¼ 0 n ¼ 1 :
dUa

dn
¼ eNa þ epa ¼

1

2
ðeNh � eN1 þ eph � ep1Þ

Wa ¼ 0
d2Wa

dn2
¼ �eMa ¼ � 1

2
ðeMh þ eM1Þ

dWa

dn
¼ 0

d3Wa

dn3
� 6sn

Ehr3h
¼ �eQa ¼ � 1

2
ðeQh þ eQ1Þ

9>>>>>>>>=
>>>>>>>>;

ð47Þ
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In the above equations:
epk ¼
eek
rh

; eNk ¼
Nnk

Enhrh
; eMk ¼

12Mnk

Enhr3h
; eQk ¼

12Qnk

Enhr3h
; ðk ¼ s; a; 1; hÞ ð48Þ
where eek is the induced strain; Nnk, Mnk and Qnk ðk ¼ s; a; 1; hÞ are the amplitudes of non-dimensional

applied axial forces, bending moments and the shear forces at the free ends.

Substituting Eqs. (46) and (47) into Eqs. (35) and (40) respectively, we have the DCB dynamic solutions

shown in Eqs. (34) and (38). When the pure bending deformation is considered, they become the solutions

of a bimorph bender.
In the static state of the DCB, dynamic equations (7)–(10) are simplified into the following related

equilibrium equations and constitutive relations:
Ns ¼ Enhrh
dus
dn

þ e31Vs

Gah
; Ms ¼ �Enhr3h

12

d2ws

dn2
; rn ¼ 2rraws ð49Þ

Enhr2h
d2us
dn2

¼ 0

�Enhr4h
12

d4ws

dn4
� 2rraws ¼ 0

9>>>=
>>>;

ð50Þ

Na ¼ Enhrh
dua
dn

þ e31Va

Gah
; Ma ¼ �Enhr3h

12

d2wa

dn2
; sn ¼ 2rsa ua

�
þ rh

2

dwa

dn

�
ð51Þ

Enhr2h
d2ua
dn2

� 2rsa ua
rh
2

dwa

dn

� �
¼ 0

�Enhr4h
12

d4wa

dn4
þ 2rsa

rh
2

dua
dn

þ rh
2

d2wa

dn2

� �
¼ 0

9>>>=
>>>;

ð52Þ
By integrating differential equations (49) and (50) with the boundary conditions given in Eq. (46), the

solutions of us, ws and rn are given by:
us ¼ ðeNs þ epsÞn
ws ¼ Bss1 sinh besn sin besn þ Bss2ðcosh besn sin besn � sinh besn cos besnÞ
rn ¼ 2rraws

9=
; ð53Þ
where
br ¼
ffiffiffiffiffiffiffiffiffiffiffi
24rra
Enhr4h

4

s
; bes ¼

ffiffiffi
2

p

2
br

Bss1 ¼
�2beseMs cosh bes cos bes þ eQsðsinh bes cos bes þ cosh bes sin besÞ

b3
esðcosh 2bes þ cos 2besÞ

Bss2 ¼
beseMsðsinh bes cos bes � cosh bes sin besÞ � eQs cosh bes cos bes

b3
esðcosh 2bes þ cos 2besÞ

9>>>>>>>>=
>>>>>>>>;

ð54Þ
The non-dimensional shear stress can be determined by solving the differential equations (51) and (52) with

the boundary conditions expressed as:
n ¼ 0 : sn ¼ 0

n ¼ 1 :
dsn
dn

¼ 2rsa eNa þ eea �
rh
2

eMa


 �
;

d2sn
dn2

� b2
ssn ¼ �rhrsaeQa

9=
; ð55Þ
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The non-dimensional shear stress is then found to be:
sn ¼ ðANe1 þ AM1 þ AQ1Þ sinh bsn þ AQ2ðcosh bsn � 1Þ ð56Þ
where
bs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rsa

1

Enhr2h
þ 3

Enhr2h

� �s
¼

ffiffiffiffiffiffiffiffiffiffiffi
8rsa
Enhr2h

s

ANe1 ¼
2rsaðeNa þ epaÞ

bs cosh bs

; AM1 ¼ � rhrsaeMa

bs cosh bs

AQ1 ¼
rhrsaeQa

b2
s

thbe; AQ2 ¼ � rhrsaeQa
b2

s

9>>>>>>>=
>>>>>>>;

ð57Þ
For the PZT bimorph bender, only the solutions of Eqs. (51) and (52) need to be considered. In this case,

the actuated forces in one of the PZTs, e.g., in the one referred to as the host beam, can be found by

utilizing the equilibrium equations, and they are given by:
Nnh ¼
1

bs

ðANe1 þ AM1 þ AQ1Þðcosh bsn � cosh bsÞ þ
1

bs

AQ2ðsinh bsn � sinh bsÞ þ AQ2ðn � 1Þ ð58Þ

Mnh ¼ � 1

2

1

bs

ðANe1

	
þ AM1 þ AQ1Þðcosh bsn � cosh bsÞ þ

1

bs

AQ2ðsinh bsn � sinh bsÞ þ AQ2ðn � 1Þ



ð59Þ
As the shear stress concentration occurs at the free end, the actuated axial force and bending moment attain

their asymptotes in the region distant from the free end. It can also be shown that, the equivalent actuated

forces obtained in Part II of the exact static solutions (Luo and Tong, 2002a,b) are very close to the

maximum values given in Eqs. (58) and (59). The equivalent forces in dimensional form are:
Neq ¼
Eh
8

eea; Meq ¼
Eh2

16
eea ð60Þ
Using the Euler–Bernoulli beam theory (Timoshenko and Gere, 1972), we can easily derive the actuated

rotation angle and deflection at the free end and thus the relations between the angle or deflection and the

voltage are:
k14 ¼ k41 ¼
3e31Lp

4Eh2
; k24 ¼ k42 ¼

3e31L2p
8Eh2

ð61Þ
The relations given in Eq. (61) are the same as those formulated by Smits et al. (1991) and Wang and Cross

(1999). The other matched components in the constitutive relation matrix can also be derived using the

same procedures.
4. Exact solutions of the shear lag models

Crawley and de Luis (1987) developed a shear lag model for a smart beam, in which the PZT patches

were modeled as rods; the finite thickness adhesive was assumed to transfer shear stresses only, and the host

beam was assumed to deform in extension or in pure bending only. Im and Atluri (1989) extended this static

model to account for a more general state of external loadings on the host beam. Crawley and Anderson
(1990) compared two analytical models of the static interaction between a host beam and the symmetrically

bonded PZT actuators. The second model was a refinement of the first one developed by Crawley and
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de Luis (1987), which accounted for both extension and bending of both the PZT patches and the host

beam while retaining the assumption of the pure shear stress state in the adhesive.

Crawley and de Luis (1987) investigated the dynamic influence of the piezoelectric actuators using the

shear stress derived from the static analysis as the exciting function, or based on the equivalent forces. On
the basis of their equivalent forces obtained through the extended static analysis, Crawley and Anderson

(1990) also conducted the dynamic analysis using their two models and similar results were obtained for the

case when the PZT patches are much thinner than the host beam; Im and Atluri (1989) also formulated

their equivalent forces, which were also used for investigating dynamic controls (Shi and Atluri, 1990).

We have derived the exact dynamic solutions for PZT smart beams including peel stresses. In our static

analysis (Luo and Tong, 2002a,b), it was shown that the finite thickness adhesive with the shear and peel

stresses provided more accurate results, especially for the flexible structures; the errors predicted by the

shear lag model may be as high as up to 90%. In the dynamic analysis, we will also compare the present
dynamic model including peel stresses (PSM) with the shear lag model. To do so, we first derive the exact

dynamic solutions for the dynamic model with only the shear stress in the adhesive layer.

Two dynamic models, referred to as a shear lag rod model (SLRM) and shear lag beam model (SLBM),

are presented for the smart beam shown in Fig. 1 in this section, and the exact dynamic solutions to a smart

beam with different substrates will be derived in Appendix A. The present exact solutions to shear lag

models are different from the approximate solutions given by Crawley and de Luis (1987), and Crawley and

Anderson (1990). Motions of PZT patches are considered in our formulations.

4.1. Shear lag beam model

In Eqs. (2)–(7), setting rn ¼ 0, we can obtain the related equations for the shear lag beam model. Eq. (8)

becomes:
Enhr2h
o2usb
on2

¼ mn
o2usb
ot2n

�Enhr4h
12

o4wsb

on4
¼ mn

o2wsb

ot2n

9>>=
>>; ð62Þ
Eqs. (9) and (10) and the solutions are the same as those of the present model including peel stresses.
Solutions to Eq. (62) are:
Usb ¼ Asb1 sin bs1n þ Asb2 cos bs1

Wsb ¼ ðBsb1 sinh bhn þ Bsb2 cosh bhn þ Bsb3 sin bhn þ Bsb4 cos bhnÞ

�
ð63Þ
Substituting the boundary conditions shown in Eq. (26) into (63), we have:
Usb ¼
sin bs1n

bs1 cos bs1

1

2
ðeN þ epÞ

Wsb ¼
Dsb1

Dsb
ðsinh bhn � sin bhnÞ þ

Dsb2

Dsb
ðcosh bhn � cos bhnÞ

9>>=
>>; ð64Þ
where
Dsb ¼ 2ðcosh bh cos bh þ 1Þ

Dsb1 ¼
1

b3
h

� bhðsinh bh � sin bhÞ � eM
2


 �
þ ðcosh bh þ cos bhÞ � eQ

2


 �h i

Dsb2 ¼
1

b3
h

bhðcosh bh þ cos bhÞ � eM
2


 �
� ðsinh bh þ sin bhÞ � eQ

2


 �h i

9>>>>>=
>>>>>;

ð65Þ
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At the intersection between Sections I and II of the host beam, Usbð1Þ is the same as that of PSM. The

deflection and the related slope are:
Wsbð1Þ ¼ � eMbh sinh bh sin bh þ eQðsinh bh cos bh � cosh bh sin bhÞ
2b3

hðcosh bh cos bh þ 1Þ
dWsbð1Þ
dn

¼ �eMbhðsinh bh cos bh þ cosh bh sin bhÞ þ eQ sinh bh sin bh

2b2
hðcosh bh cos bh þ 1Þ

9>>>=
>>>;

ð66Þ
Replacing the related items of b22, b23, b32 and b33 in Eqs. (B.8) and (B.9) with the derived expressions shown
in Eq. (66), we have the equation with the same form as that of Eq. (45), and then the unknown forces at the

intersection between Sections I and II are solved. Substituting the obtained forces at the intersection into
Eqs. (32), (64) and (38), we find the steady state motions for the shear lag beam model, and the numerical

comparisons will be presented in Part II of this work.

We can show that, except for the area near the free PZT edge, the peel stress predicted by the present

model is almost zero, and thus that wnh ¼ wn1 holds true in the area distant to the PZT edge. However, the

shear lag beam model gives:
wnh ¼ wn1 þ
Dsb1

Dsb
ðsinh bhn

	
� sin bhnÞ þ

Dsb2

Dsb
ðcosh bhn � cos bhnÞ



sinXtn ð67Þ
The relation of wnh ¼ wn1 is true only in static state.

4.2. Shear lag rod model

The formulation procedures for SLRM are similar to those of PSM. Only the equations that are different

from those of the previous formulation are given. In SLRM, Eqs. (2) and (3) are simplified as follows:
rh
oNn1

on
þ sn ¼ mn

o2un1
ot2n

rh
oNnh

on
� sn ¼ mn

o2unh
ot2n

; rh
oQnh

on
¼ mn

o2wnh

ot2n
;

oMnh

on
þ 1

2
sn � Qnh ¼ 0

9>>=
>>; ð68Þ
The constitutive equation of the adhesive is given by:
sn ¼ rsa ðunh
	

� un1Þ þ
rh
2

ownh

on



ð69Þ
The motion equations can be simplified as:
Enhr2h
o2un1
on2

þ rsa ðunh � un1Þ þ
rh
2

ownh

on

	 

¼ mn

o2un1
ot2n

Enhr2h
o2unh
on2

� rsa ðunh � un1Þ þ
rh
2

ownh

on

	 

¼ mn

o2unh
ot2n

�Enhr4h
12

o4wnh

on4
þ rsarh

2

ounh
on

� oun1
on

� �
þ rh

2

o2wnh

on2

	 

¼ mn

o2wnh

ot2n

9>>>>>>>=
>>>>>>>;

ð70Þ
Eqs. (8) and (10) become:
Enhr2h
o2usr
on2

¼ mn
o2usr
ot2n

ð71Þ
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Enhr2h
o2uar
on2

� 2rsa uar þ
rh
2

owar

on

� �
¼ mn

o2uar
ot2n

�Enhr4h
12

o4war

on4
þ 2rsa

rh
4

ouar
on

þ rh
2

o2war

on2

� �
¼ mn

o2war

ot2n

9>>=
>>; ð72Þ
It is noted that, 2Qar ¼ Qnh, 2Mar ¼ Mnh and 2war ¼ wnh in this case.

The characteristic equation (18) can be rewritten as:
½a2ub
2 þ ðx2 � a2aÞ	Aa �

rh
2

ba2aBa ¼ 0

rh
4

ba2aAa � a2wb
4 � r2h

8
a2ab

2 þ x2

� �	 

Ba ¼ 0

9>=
>; ð73Þ
The condition for obtaining non-trivial solutions of Aa and Ba is the same as that of the characteristic

equation (19) and the other formulations are also similar to the previous demonstrations, except for:
baw ¼
ffiffiffi
2

p
rhaa

4aw

Kbsri ¼ bsri b2
sri �

6rsa
Enhr3h

Ki0 þ
rh
2


 �	 

ði ¼ 1; 2Þ; Kbsr3 ¼ bsr3 b2

sr3 � 6rsa
Enhr3h

K30 � rh
2

� �h i
9>>=
>>; ð74Þ
As baw for SLRM is different, the eigenvalues bsri ði ¼ 1; 2; 3Þ evaluated from Eq. (19) are different from

those of PSM. Using the same procedure, we can solve Usr, Uar and War, which are expressed in forms of

Eqs. (34) and (38), except for replacing bi with bsri ði ¼ 1; 2; 3Þ respectively.
At the intersection between Sections I and II of the host beam,
Wnhð1Þ ¼ 2Warð1Þ;
dWnhð1Þ
dn

¼ 2
dWarð1Þ
dn

ð75Þ
The intersectional forces can still be found by using Eq. (45), except for setting Wsr to be zero in Eqs. (B.7)–

(B.12). Substituting the found intersectional forces into Eqs. (32), (34) and (38), we can obtain the exact

solutions to the shear lag rod model.

Following the similar method, dynamic solutions of the composite beam with different materials

and geometric parameters can be analytically solved for the shear lag rod model, which are given in Ap-

pendix A.
5. Discussion

Using the same solution procedure, Eqs. (14), (15), (22) and (23) can also be solved, and then the exact

solutions related to very high frequency for the model of Fig. 1 are obtained. Due to space limitation, they

are not given in details here.

In Eq. (19), when x ¼ aa, or ðb2
au � b2

xuÞ ¼ 0, it becomes:
k2 � ½b2
aw þ ðb2

au � b2
xuÞ	k � ðb2

xw þ b2
awb

2
xuÞ ¼ 0 ð76Þ
The roots of Eq. (76) are explicitly given as:
k1;2 ¼
1

2
½b2

aw

�
þ ðb2

au � b2
xuÞ	 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½b2

aw þ ðb2
au � b2

xuÞ	
2 þ 4ðb2

xw þ b2
awb

2
xuÞ

q �
ð77Þ
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Noting that,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½b2

aw þ ðb2
au � b2

xuÞ	
2 þ 4ðb2

xw þ b2
awb

2
xuÞ

q
> ½b2

aw þ ðb2
au � b2

xuÞ	 ð78Þ
It is evident that one root of Eq. (76) is positive real number and the other one negative real number.
Therefore, the solution can be expressed as given in Eq. (22).

There is at least one real number in Eq. (19). If the other two roots were conjugate complex numbers, the

structural vibrations would not be excited. It is drawn that three roots of Eq. (19) are all real numbers, and

thus the equation can be rewritten as:
ðk � k1Þðk � k2Þðk � k3Þ ¼ 0; or k3 � ðk1 þ k2 þ k3Þk2 þ ðk1k2 þ k2k3 þ k3k1Þk � k1k2k3 ¼ 0 ð79Þ
By comparing Eq. (19) with (79), we have the following formulations.

1. k1 > 0:

(a) When x < aa, k2k3 < 0; one of roots k2 and k3 is positive and the other negative.

(b) When x > aa, k2k3 > 0; either both roots k2 and k3 are positive or both negative. If both roots are

positive, there will be no vibration. Therefore, both roots are negative.

2. k1 < 0:

(a) When x < aa, k2k3 > 0; either both roots k2 and k3 are positive or both negative. If both roots are

negative, there will be a contradiction to the solutions given in Eq. (22). Therefore, both roots are

positive.
(b) When x > aa, k2k3 < 0; one of roots k2 and k3 is positive and the other negative.

In summary, when x < aa, there are two positive roots and one negative root for the characteristic

equation (19), shown in cases 1(a) and 2(a), and the solutions are given by Eq. (21).

When x > aa, there are two negative roots and one positive root, shown in cases 1(b) and 2(b), and the

solutions are given by Eq. (23).
6. Conclusion

On the basis of the Euler–Bernoulli beam theory, piezoelectric relations and the model of adhesive joints

developed by Goland and Reissner (1944), the partial differential forms of the motion equations of the

smart beam are derived. The partial differential equations are then dissolved into two independent groups

of symmetric and anti-symmetric equations using the proper transformation, and then the exact dynamic

solutions to piezoelectric smart beams including peel stresses are analytically obtained by assuming the

harmonic motions. The exact solutions are applied to the cantilever beam with a bonded PZT patch to the
clamped end, whose frequency spectra, resonant frequencies, normal mode shapes, and harmonic responses

of the shear and peel stresses can be investigated. Dynamic solutions of the PZT bimorph bender are also

discussed briefly, and the constitutive relations derived for the applied voltage agree with the existing

expressions.
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Appendix A. Exact dynamic solutions for the PZT smart beam with different adherends using the shear lag rod

model

The material properties for both the PZT patches and the host beam are still assumed to be the same,
whereas the assumption of same geometry is abandoned.

In addition to the non-dimensional parameters defined in Eq. (1), the following parameters are intro-

duced:
r1 ¼
t1
Lp

; mn1 ¼ mT1x
2
T ; mT1 ¼

m1h
Ga

ðA:1Þ
where t1 is the thickness of the PZT patch, m1 ð¼ qt1Þ is the density of the PZT patch, mass per unit length.

It can be derived that:
mn1 ¼
r1
rh
mn ¼

1

Rht
mn ðA:2Þ
where Rht is the thickness ratio of the host beam to the PZT patch.

A.1. A host beam with one bonded PZT patch

As shown in Fig. 3, the PZT dynamic equation is:
rh
oNn1

on
þ sn ¼ mn1

o2un1
ot2n

ðA:3Þ
The constitutive relation is given by:
Nn1 ¼ Enhr1
oun1
on

þ e31V1ðtÞ
Gah

ðA:4Þ
The dynamic equations of the host beam and the constitutive relations of the adhesive are the same as those

given in Eqs. (68) and (69).

The second and third formulations of Eq. (70) are not changed and the first one of Eq. (70) becomes:
Enhrhr1
o2un1
on2

þ rsa ðunh
	

� un1Þ þ
rh
2

ownh

on



¼ r1

rh
mn

o2un1
ot2n

ðA:5Þ
The motion equations corresponding to Eqs. (71) and (72) can be derived:
Enhr2h
o2usr
on2

¼ mn
o2usr
ot2n

ðA:6Þ

Enhr2h
o2uar
on2

� rsað1þ RhtÞ uar þ
rh
2

owar

on

� �
¼ mn

o2uar
ot2n

�Enhr4h
12

o4war

on4
þ rsað1þ RhtÞ

rh
2ð1þ RhtÞ

ouar
on

þ rh
2

o2war

on2

� �
¼ mn

o2war

ot2n

9>>=
>>; ðA:7Þ
where 2usr ¼ unh þ un1=Rht, and 2Nsr ¼ Nnh þ Nn1=Rht. Other definitions are the same as those of the shear lag

rod model with identical adherends, and the host beam extension is solved: unh ¼ 2ðusr þ uarÞ=ð1þ RhtÞ.



x

N1 N1 +dN1

(a)
τ

τ

Mh Mh+ dMh

Nh Nh +dNh

(c)Qh Qh+dQh

dx

z

(b)

Fig. 3. A shear lag rod model for a host beam with one PZT patch. (a) PZT infinitesimal element, (b) adhesive layer and (c) host beam

infinitesimal element.
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The characteristic equation can also be expressed by Eq. (19) except:
aa ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rsað1þ RhtÞ

mT

s
and baw ¼ rhaa

2aw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Rht

p ðA:8Þ
Using the same solution procedure, solutions of Usr, Uar and War can be obtained as given in Eqs. (34) and
(38) with b1, b2, and b3 being replaced by the new solved eigenvalues.

A.2. A host beam with two symmetrically bonded PZT patches

When the two PZT patches are symmetrically bonded to the host beam as shown in Fig. 4, we can

develop the following formulations for the shear lag rod model.

The non-dimensional dynamic equilibrium equations are:
rh
oNn1

on
þ sn1 ¼

r1
rh
mn

o2un1
ot2n

; rh
oNn2

on
� sn2 ¼

r1
rh
mn

o2un2
ot2n

rh
oNnh

on
� sn1 þ sn2 ¼ mn

o2unh
ot2n

; rh
oQnh

on
¼ mn

o2wnh

ot2n
;

oMnh

on
þ sn1 þ sn2

2
� Qnh ¼ 0

9>>=
>>; ðA:9Þ
The constitutive relations of the adhesives are given by:
sn1 ¼ rsa ðunh
	

� un1Þ þ
rh
2

ownh

on



; sn2 ¼ rsa ðun2

	
� unhÞ þ

rh
2

ownh

on



ðA:10Þ
The dynamic equilibrium equations and the constitutive relations can be transferred into two sets of the

independent equations that can be separately solved.

Case 1: Extensional motion of the host beam

When the host beam undergoes extensional motion only, we have the following set of equations by

introducing the transforming parameters:
2Nps ¼ Nn1 þ Nn2; 2ups ¼ un1 þ un2; 2sps ¼ sn1 � sn2; 2Vps ¼ V1 þ V2 ðA:11Þ



N1 N1+dN1 (a)

Mh Mh+dMh

Nh Nh+dNh

Q
h

Q
h
+dQ

h

(c)

τ1

τ1

(b)

τ2

τ2

(d)

N2 N2+dN2

dx
(e)

x

z

Fig. 4. A shear lag rod model for a host beam with two symmetrically bonded PZT patches. (a) PZT1 infinitesimal element,

(b) adhesive layer 1, (c) host beam infinitesimal element, (d) adhesive layer 2 and (e) PZT2 infinitesimal element.
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The dynamic equilibrium equations are:
rh
oNps

on
þ sps ¼

r1
rh
mn

o2ups
ot2n

; rh
oNnh

on
� 2sps ¼ mn

o2unh
ot2n

ðA:12Þ
The constitutive relations are given by:
Nps ¼ Enhr1
oups
on

þ e31Vps

GaL
; Nnh ¼ Enhrh

ounh
on

; sps ¼ rsaðunh � upsÞ ðA:13Þ
The decoupled dynamic equations (A.15) and (A.16) are finally obtained by substituting Eq. (A.13) into

(A.12) and introducing the following relations:
2uss ¼ unh þ 2ups=Rht; 2usa ¼ unh � ups; sps ¼ 2rsausa ðA:14Þ

Enhr2h
o2uss
on2

¼ mn
o2uss
ot2n

ðA:15Þ

Enhr2h
o2usa
on2

� ð2þ RhtÞrsausa ¼ mn
o2usa
ot2n

ðA:16Þ
Eqs. (A.15) and (A.16) can be separately solved, and then the extensional motions are obtained by referring

to the relations shown in Eqs. (A.11) and (A.14). Incorporating with dynamic solutions of the host beam

where no PZT patches are bonded and considering the continuity condition, we can obtain the extensional

motion of the host beam. The other quantities of the smart beam can also be readily obtained following the

same procedure as that of solutions to the present PSM model.

When both PZTs are used as actuators, the extensional motion can be achieved by applying a voltage

VsðtnÞ of the same magnitude to both PZT patches so that the electric fields in both PZTs are in the same
direction at any time.
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Case 2: Flexural motion of the host beam

When the host beam undergoes the flexural motion only, the following transforming parameters are

used:
2Npa ¼ Nn1 � Nn2; 2upa ¼ un1 � un2; 2spa ¼ sn1 þ sn2; 2Vpa ¼ V1 � V2 ðA:17Þ

The dynamic equations are:
rh
oNpa

on
þ spa ¼

r1
rh
mn

o2upa
ot2n

rh
oQnh

on
¼ mn

o2wnh

ot2n
;

oMnh

on
þ spa � Qph ¼ 0

9>>=
>>; ðA:18Þ
and the constitutive relations are given by:
Npa ¼ Enhrh
oupa
on

þ e31Vpa

Gah
; Mnh ¼ � 1

12
Enhr3h

o2wnh

on2
; spa ¼ rsa

�
� upa þ

rh
2

ownh

on

�
ðA:19Þ
The motions equations are then transferred into:
Enhr2h
o2upa
on2

þ Rhtrsa � upa þ
rh
2

ownh

on

� �
¼ mn

o2upa
ot2n

�Enhr4h
12

o4wnh

on4
þ Rhtrsa

rh
Rht

� oupa
on

þ rh
2

o2wnh

on2

� �
¼ mn

o2wnh

ot2n

9>>=
>>; ðA:20Þ
The characteristic equation is expressible by Eq. (19) except for:
aa ¼
ffiffiffiffiffiffiffiffiffiffiffi
rsaRht

mT

r
and baw ¼ rhaa

aw

ffiffiffiffiffiffiffiffiffi
2Rht

p ðA:21Þ
When both PZTs are used as actuators, the flexural motion can be achieved by applying a voltage VsðtnÞ of
the same magnitude but opposite phase to PZT1 and PZT2 so that the electric fields in both PZTs are

opposite in direction at any time.

In this case, different equations from those of the exact dynamic solutions including peel stresses are

given as follows.

Eq. (37) becomes:
K1 ¼ b1K10 ¼ � rh
2

b1b
2
au

b2
1 � ðb2

au � b2
xuÞ

K2 ¼ b2K20 ¼ � rh
2

b2b
2
au

b2
2 � ðb2

au � b2
xuÞ

K3 ¼ b3K30 ¼ � rh
2

b3b
2
au

b2
3 þ ðb2

au � b2
xuÞ

9>>>>>>>>=
>>>>>>>>;

ðA:22Þ
Eqs. (41) and (42) are rewritten as:
Kb1 ¼ b1 b2
1 þ

12rsa
Enhr3h

K10 �
rh
2


 �	 


Kb2 ¼ b2 b2
2 þ

12rsa
Enhr3h

K20 �
rh
2


 �	 


Kb3 ¼ b3 b2
3 þ

12rsa
Enhr3h

K30 þ
rh
2


 �	 


9>>>>>>=
>>>>>>;

ðA:23Þ
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Ba2 ¼
1

Da
½DN2ðepÞ þ DM2ð�eMÞ þ DQ2ð�eQÞ	

Ba4 ¼
1

Da
½DN4ðepÞ þ DM4ð�eMÞ þ DQ4ð�eQÞ	

Ba5 ¼
1

Da
½DN5ðepÞ þ DM5ð�eMÞ þ DQ5ð�eQÞ	

9>>>>>>=
>>>>>>;

ðA:24Þ
Eqs. (43) and (44) are degenerated as:
Wnhð1Þ ¼ WnhIIð0Þ;
dWnhð1Þ
dn

¼ dWnhIIð0Þ
dn

ðA:25Þ
Eq. (45) is simplified as
b22eM þ b23eQ ¼ c2eep þ c2P eP
b32eM þ b33eQ ¼ c3eep þ c3P eP

�
ðA:26Þ
and the related coefficients can be simplified accordingly.

The partial differential form of motion equations can be obtained for the peel stress model with different

cross sections and two symmetric PZT patches. Following the same procedure to that of the identical

composite smart beam and performing the similar transformation to that in the static analysis for two
symmetric PZT patches, the equations are simplified into two sets of independent equations, of which one is

an 8-order differential equation. By assuming the harmonic motion, a four order polynomial equation can

be obtained and analytically solved. However, analysis of the solution forms and the determinations of the

integration constants are too complicated to conduct practically.

Appendix B. The intersectional displacements of the host beam and the coefficients of Eq. (45)

The expressions for the intersectional displacements of the host beam are:
UnhIIð0Þ ¼
eN cos bs1ap � eF

bs1 sin bs1ap

WnhIIð0Þ ¼
1

b3
hðcosh bhap cos bhap � 1Þ

½�bheM sinh bhap sin bhapþ

eQðsinh bhap cos bhap � cosh bhap sin bhapÞ � eP ðsinh bhap � sin bhapÞ	
dWnhIIð0Þ

dn
¼ 1

b2
hðcosh bhap cos bhap � 1Þ

½bheMðsinh bhap cos bhap þ cosh bhap sin bhapÞ

þeQ sinh bhap sin bhap þ eP ðcosh bhap � cos bhapÞ	

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

ðB:1Þ

Usð1Þ ¼
ðeN þ epÞ tan bs1

2bs1

Wsð1Þ ¼
�beeMðcosh 2be � cos 2beÞ þ eQðsinh 2be � sin 2beÞ

4b3
eðcosh 2be þ cos 2beÞ

dWsð1Þ
dn

¼ �2beeMðsinh 2be þ sin 2beÞ þ eQðcosh 2be � cos 2beÞ
4b2

eðcosh 2be þ cos 2beÞ

9>>>>>>>>=
>>>>>>>>;

ðB:2Þ
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Uað1Þ ¼
1

2Da
f½DN2fu2ð1Þ þ DN4fu4ð1Þ þ DN5fu5ð1Þ	ðeN � epÞ � ½DM2fu2ð1Þ þ DM4fu4ð1Þ

þDM5fu5ð1Þ	eM � ½DQ2fu2ð1Þ þ DQ4fu4ð1Þ þ DQ5fu5ð1Þ	eQg

Wað1Þ ¼
1

2Da
f½DN2fw2ð1Þ þ DN4fw4ð1Þ þ DN5fw5ð1Þ	ðeN � epÞ � ½DM2fw2ð1Þ þ DM4fw4ð1Þ

þDM5fw5ð1Þ	eM � ½DQ2fw2ð1Þ þ DQ4fw4ð1Þ þ DQ5fw5ð1Þ	eQg
dWað1Þ
dn

¼ 1

2Da
f½DN2fd2ð1Þ þ DN4fd4ð1Þ þ DN5fd5ð1Þ	ðeN � epÞ � ½DM2fd2ð1Þ þ DM4fd4ð1Þ

þDM5fd5ð1Þ	eM � ½DQ2fd2ð1Þ þ DQ4fd4ð1Þ þ DQ5fd5ð1Þ	eQg

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

ðB:3Þ
where
fu2ð1Þ ¼ K1 sinh b1 � K3 sin b3

fu4ð1Þ ¼ K2 sinh b2 � K3 sin b3

fu5ð1Þ ¼ K1K31 cosh b1 þ K2K32 cosh b2 � K3 cos b3

9>=
>; ðB:4Þ

fw2ð1Þ ¼ cosh b1 � cos b3

fw4ð1Þ ¼ cosh b2 � cos b3

fw5ð1Þ ¼ K31 sinh b1 þ K32 sinh b2 þ sin b3

9>=
>; ðB:5Þ

fd2ð1Þ ¼ b1 sinh b1 þ b3 sin b3

fd4ð1Þ ¼ b2 sinh b2 þ b3 sin b3

fd5ð1Þ ¼ b1K31 cosh b1 þ b2K32 cosh b2 þ b3 cos b3

9>=
>; ðB:6Þ
The coefficients of Eq. (45) are given by:
b11 ¼ � c tan bs1ap

bs1
þ tan bs1

2bs1
þ 1

2Da
½DN2fu2ð1Þ þ DN4fu4ð1Þ þ DN5fu5ð1Þ	

b12 ¼ � 1

2Da
½DM2fu2ð1Þ þ DM4fu4ð1Þ þ DM5fu5ð1Þ	

b13 ¼ � 1

2Da
½DQ2fu2ð1Þ þ DQ4fu4ð1Þ þ DQ5fu5ð1Þ	

9>>>>>>>=
>>>>>>>;

ðB:7Þ

b21 ¼
1

2Da
½DN2fw2ð1Þ þ DN4fw4ð1Þ þ DN5fw5ð1Þ	

b22 ¼
sinh bhap sin bhap

b2
hðcosh bhap cos bhap � 1Þ

� ðcosh 2be � cos 2beÞ
4b2

eðcosh 2be þ cos 2beÞ

� 1

2Da
½DM2fw2ð1Þ þ DM4fw4ð1Þ þ DM5fw5ð1Þ	

b23 ¼ � sinh bhap cos bhap � cosh bhap sin bhap

b3
hðcosh bhap cos bhap � 1Þ

þ ðsinh 2be � sin 2beÞ
4b3

eðcosh 2be þ cos 2beÞ

� 1

2Da
½DQ2fw2ð1Þ þ DQ4fw4ð1Þ þ DQ5fw5ð1Þ	

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

ðB:8Þ
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b31 ¼
1

2Da
½DN2fd2ð1Þ þ DN4fd4ð1Þ þ DN5fd5ð1Þ	

b32 ¼ � sinh bhap cos bhap þ cosh bhap sin bhap

bhðcosh bhap cos bhap � 1Þ � ðsinh 2be þ sin 2beÞ
2beðcosh 2be þ cos 2beÞ

� 1

2Da
½DM2fd2ð1Þ þ Dd4fw4ð1Þ þ DM5fd5ð1Þ	

b33 ¼ � sinh bhap sin bhap

b2
hðcosh bhap cos bhap � 1Þ

þ ðcosh 2be � cos 2beÞ
4b2

eðcosh 2be þ cos 2beÞ

� 1

2Da
½DQ2fd2ð1Þ þ DQ4fw4ð1Þ þ DQ5fd5ð1Þ	

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

ðB:9Þ

c1e ¼ � tan bs1

2bs1
þ 1

2Da
½DN2fu2ð1Þ þ DN4fu4ð1Þ þ DN5fu5ð1Þ	

c1F ¼ � 1

bs1 sin bs1ap

9>>=
>>; ðB:10Þ

c2e ¼
1

2Da
½DN2fw2ð1Þ þ DN4fw4ð1Þ þ DN5fw5ð1Þ	

c2P ¼ � sinh bhap � sin bhap

b3
hðcosh bhap cos bhap � 1Þ

9>>=
>>; ðB:11Þ

c3e ¼
1

2Da
½DN2fd2ð1Þ þ DN4fd4ð1Þ þ DN5fd5ð1Þ	

c3P ¼ cosh bhap � cos bhap

b2
hðcosh bhap cos bhap � 1Þ

9>>=
>>; ðB:12Þ
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