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Abstract

This work presents exact dynamic solutions to piezoelectric (PZT) smart beams including peel stresses. The govern-
ing equations of partial differential forms are firstly derived for a PZT smart beam made of the identical adherends,
and then general solutions of the governing equations are studied. The analytical solutions are applied to a cantilever
beam with a partially bonded PZT patch to the fixed end. For the given boundary conditions, exact solutions of the
steady state motions are obtained. Based on the exact solutions, frequency spectra, natural frequencies, normal mode
shapes, harmonic responses of the shear and peel stresses are discussed for the PZT actuator. The details of the nu-
merical results and sensing electric charges will be presented in Part II of this work. The exact dynamic solutions can be
directly applied to a PZT bimorph bender. To compare with the classic shear lag model whose numerical demon-
strations will be given in Part II, the related equations are also derived for the shear lag rod model and shear lag beam
model.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Dynamic control for flexible smart structures has drawn a significant attention in the past decades. In
our previous work on exact static solutions (Luo and Tong, 2002a,b), it was shown that piezoelectric (PZT)
beam models taking into account both shear and peel stresses in adhesive are more accurate than the
classical shear lag model, especially for flexible structures. To better understand dynamic behaviors of
smart structures, we will develop exact solutions for dynamics of piezoelectric smart beams considering peel
stresses in this work.

To obtain the exact dynamic solutions, we consider a smart beam in Fig. 1, whose composite part is
made of the identical substrates or adherends. This special type of piezoelectric devices is called the PZT
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Fig. 1. A smart beam with a bonded PZT patch.

bimorphs, which have been widely used as displacement transducers or actuators in precise sub-micron
increments and in active vibration or noise control.

Smits et al. (1991) presented an extensive review for the PZT bimorph applications, in which, they
derived the constitutive equations for the PZT bimorph bender using the internal energy density of in-
finitesimal volume elements in thermodynamic equilibrium in the presence of a voltage on the electrodes.
Kugel et al. (1998) developed a new type of bimorph-based piezoelectric air transducer with a frequency
range of 200-1000 Hz. Morris and Forster (2000) discussed the optimization of a circular piezoelectric
bimorph for a micro-pump driver. Lim et al. (2001) studied three-dimensional responses for parallel piezo-
electric bimorphs. In these investigations, adhesive layer was not taken into account in the formulations of
all models and peel stress along through the thickness direction was not considered.

This paper is not intended to study design and applications of PZT bimorphs, and instead focuses on
developing analytical solutions of dynamics applicable to PZT bimorphs. In the demonstrated examples, it
can be deemed as the simplest bimorph that is formed by bonding a PZT patch to the top surface of a host
beam and the obtained dynamic solutions can be tailored to study the dynamic and static analysis of a PZT
bimorph bender.

Crawley and de Luis (1987) developed a theoretical framework for a smart beam with bonded or em-
bedded PZT patches. In their dynamic analysis, they considered the case for which the PZT patches were
assumed to be very thin compared with the host beam, and thus the static results of shear stresses and the
actuated equivalent forces can be directly used as the excitation functions by ignoring the PZTs’ mass.

Gibbs and Fuller (1992) presented an approximate analytical model for the excitation of a thin beam, in
which no adhesive layer was considered and the actuated equivalent forces were discussed. Irschik et al.
(1999) presented a new class of shaped piezoelectric sensors for deflection measurements. Rizet et al. (2000)
developed an active control system for controlling the flexural vibration of a smart beam, whose results
indicated that the simple analytical model was not very accurate and the first two resonant frequencies
predicted by the finite element method were lower than those of the experiment.

A dynamic smart beam model will be presented on the basis of our static model by including the PZT
mass. Using the concept of equivalent forces, we will also develop an approximate solution procedure for
the dynamic analysis of PZT smart beams by considering peel stress distributions in Part II, in which, the
application and limitations of the dynamic equivalent forces will be investigated by comparing the exact
dynamic solutions with the approximate ones.

2. Motion equations and solutions of a smart beam

Consider a smart beam with a bonded PZT patch as shown in Fig. 1. It is assumed that the patch and
host beam have identical material and geometrical properties.

2.1. Non-dimensional motion equations

To derive non-dimensional forms of dynamic equations for the PZT patch and the host beam, we
introduce the following non-dimensional parameters:



L. Tong, Q. Luo | International Journal of Solids and Structures 40 (2003) 47894812 4791

u; wi u, Wy ¢ x ; t [0) » 1 1 [E,
Upt = - Wpl = —— Upp =7 Wy =7, =7 n = 7> = === 74\
Toh YT "k " h L, T o’ T L\ p
g E, T o h ) mh h E, h
nh — ~ Th = 5, Op = rp =7, my, = mrry, mr=—-, Vg = — Yoea = 5 T
"G, G, G, "L, o TG, t,’ G, t,
N N M, M, O O
Nn = ) Nn = 9 Ml = ) Mn1 =S 7 nl = ) nh —
ey " G.h ' Gk " GLyh On=Gn 9" =G
(1)

Some of the above parameters are different from those defined in our static analysis (Luo and Tong,
2002a,b) for convenient formulations. In Eq. (1), E}, is the elastic modulus of the adherends; m and p are the
density, mass per unit length and per unit volume respectively; L, is the length of the PZT patch; £, and G,
are the elastic and shear moduli of the adhesive layer. Definitions of remaining symbols are given in Figs. 1
and 2. The subscript # in all equations refers to non-dimensional quantities.

Referring to Fig. 2 and Eq. (1), we have dynamic equations:
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On the basis of the Euler—Bernoulli beam theory (Timoshenko and Gere, 1972), the piezoelectricity theory
(Tiersten, 1969) and the model of adhesive joints developed by Goland and Reissner (1944), the constitutive
relations of the PZT patch, the host beam, which may also be a PZT material, and the adhesive layer are:
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Fig. 2. Free body diagrams of the infinitesimal elements. (a) PZT infinitesimal element, (b) the adhesive element and (c) host beam
infinitesimal element.
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where e3; is a coupling piezoelectric constant; ¥, and ¥] are voltages. In Egs. (2)—(4), effects of the rotational
inertia and shear strains are neglected in light of the Euler—Bernoulli beam theory and the unit width of the
beam cross section with a rectangular shape is assumed.

Substituting Eq. (4) into Egs. (2) and (3), we can obtain the motion equations:
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2.2. General solutions to partial differential forms of the motion equations

To solve partial differential equations shown in Eq. (5), we first simplify it using the following trans-
formations:

2us = Upjp + Un1, 2]\]3 = Nnh + Nn17 2WS = Wi — Wi, 2Q3 = th - in> 2M = Mnh - Mﬂ

g = Upy — Un1;  2Ng = Nppy — Nuty 2Wa = Wi + W1, 200 = Qi + O, 2M, = M,y + M,
h=V+N, 2V=V-N

(6)
By utilizing the above transformations, Egs. (4) and (5) become:
Ou, ey V(1) E, 7 O*w;
Ns:En - - ) s = = -, n:2(ras 7
! W'h oz Guh 12 662 o VgaW, ( )
0%u 0%u
Enhri —u2 =my —1/;
o, o (8)
E, it 0w, 5 %w,
- — ZFggWs = n A
12 p¢ Mo or?
6ua €31 Vu(l‘) Enhri azwa T aw“
Na:Enz 9 Ma:_ 9 n:2m a AN 9
"hoe TG 12 o T (Mt g e ©)



L. Tong, Q. Luo | International Journal of Solids and Structures 40 (2003 ) 47894812 4793

n awa> B %u,

62
Enhri ,l,l 2rw (ua +
g

2 ¢ "o
4 A4 2 ! 2 (10)
_Enhrh 0w, T Ouy, L 7, 0°w, o°w,
12 og o 2 og " o2

The uncoupled differential equation (8) can be easily solved and the coupled equation (10) can also be
solved analytically. Once Eqgs. (8) and (10) are solved, the dynamic shear and peel stresses are obtained
using Egs. (7) and (9), and the dynamic solutions to extensional and flexural motions of the PZT and the
host beam can be obtained through the transformations defined in Eq. (6).

When the harmonic motions are assumed, solutions to Eq. (8) become:

u, = Uy(&) sin Qr,,  w, = W,(&) sin Qt, (11)
and the vibration amplitudes U,(¢) and W,(&) can be found:
U, = Ag sin B & + A cos & (12)

W, = (B, sinh B,& + By, cosh §,&) sin B,E + (B sinh ,¢ + By cosh B,E) cos f,E, when o < o, (13)
W= (Ba& +Bo&® + Baé + Bu), when o = o (14)

W, = (Bs; sinh f,& + By, cosh f,& + Bg sin f,& + By cos f, &),  when o > o (15)

where
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To solve Eq. (10), we assume that:
u, = U, (&) sin Qt, = A% sin Qt,,  w, = W,(&)sin Qt, = B,e" sin Q1, (17)

Substituting Eq. (17) into Eq. (10) yields the following characteristic equations:
[agﬁz +(0? — o2)) 4, — %h po2B, =0

The condition ensuring non-trivial solutions to u, and w, requires:
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In Egs. (18) and (19),
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It can be shown that, the three roots of /1 in Eq. (19) are all real numbers in normal cases of structural
geometry, mass density and material properties. The solution forms of amplitudes U, and W, are:

U, = A, sinh & + A, cosh & + Az sinh B,E + Auq cosh B, + Agys sin B3 + Aye cos B¢
W, = By, sinh 8, & + B,, cosh 8, + B,z sinh f,& + B4 cosh f,E + B,s sin §3E + Byg cos 55 (21)
when o < o,
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when o > a,

where ; = /|4, (i=1,2,3); 4 are the roots of Eq. (19); 4, and B, (i=1,2,...,6) are integration
constants to be determined.

It can be seen that, the solution forms depend on the frequencies of the applied voltages or loadings,
the material properties and the geometries of the adhesive and adherends. For example, assume the ma-
terial properties and geometric parameters of the adherends and the adhesive to be: m = pA4;, = ph =
7800 x 0.001 kg/m; E, = 3.00 Gpa; G, = 1.07 Gpa and ¢, = 0.1 mm, we have:

t = |22 — 1656379 (1/s)
mr

If w > a,, it is related to the vibrations with very high frequencies. In practice, the lower frequencies are
normally concerned. Therefore, we only consider dynamic solutions in the case that w < a,; in this case, @
is also less than og. The solutions are thus given by Eqgs. (12), (13) and (21). The integration constants in
these equations can be determined by the boundary conditions. To validate numerically the solution and
study the PZT bimorph bender, we consider a host beam with the partially bonded PZT patch as shown in
Fig. 1.

3. Exact solutions of a cantilever beam with the bonded PZT patch to the fixed end

3.1. Boundary conditions

The different expressions of motion equations for each section of the smart beam in Fig. 1 require the
boundary conditions for each part. The boundary conditions of Section II are:
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According to the relations defined in Eqgs. (5) and (6), we have:
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where ¢, is the electrically induced strain of the PZT and ¥} is the magnitude of the applied voltage; Ny,
My, and Oy, are the amplitudes of non-dimensional internal forces at the intersection between Sections I
and II of the host beam; Fy, and P,, are the amplitudes of non-dimensional applied forces at the free end of
the host beam at which the applied bending moment is assumed to be zero as our numerical results show
that the frequency spectra in terms of sensing electric charge caused by the bending moment are similar to
ones for the applied shear force.

It can be seen that the problem becomes solving the homogeneous differential equation with the inhomo-
geneous boundary conditions. Performing proper transformations, we may obtain the inhomogeneous
differential equations with the homogeneous boundary conditions (Tiersten, 1969), and then the exact
solutions, expressing in forms of the Fourier series normally, are the sum of the particular solutions ex-
panded in a series of characteristic functions by the inhomogeneous excitations and the complementary
functions shown in Egs. (12)—(15), (21)—(23), and (30), (31) given as below. With the increase of time,
motions defined by the complementary functions will vanish because of structural damping and the par-
ticular solutions or steady state motions of the structure will remain.

Alternatively, we may substitute the inhomogeneous boundary conditions into the complementary
functions to find the integration constants and then the steady state solutions are also obtained as follows.

3.2. Solutions of Section II

The dynamic solutions to Section II of the smart beam (Thomson, 1998) are:
it = Ui (&) $in 1, Wy = Wi (&) sin Q1 (30)

Unnit = Ap sin B & + Apa cos B €
Wi = (B sinh 8,& + By cosh f5,E + By sin f§,E + By cos 5,E) (31)
where, f, = @

w
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Substituting the boundary conditions of Section II shown in Eq. (24) into Eq. (31), we find:

e W e _Aé) e cos f,& sin f, & (32)
Wy = A—hhl(sinh By€ + sin B,¢) + Ah: (cosh B, + cos B,E) + e ﬁﬁh + ¢ ﬁf,h
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Ap = % [—preum(sinh f,0, sin f,0, + cosh f,0, cos f,a, — 1) + o (sinh f,a, cos B, (33)
g cosh f,a, sin f§,0,) — ep(sinh f,a, — sin f§,0,)]

A, = 2(cosh f,0, cos o, — 1)

3.3. Solutions of Section 1

Substituting the boundary conditions of Section I shown in Eq. (26) into Egs. (12) and (13), we have:

_sinfy¢ 1
"= Bacosf, 2 ) (34)
Wi = 2% (sinh ¢ sin §,€) + 2 (cosh ¢ sin f,¢ — sinh i, cos ,€)
where

Ag = ﬁif [2,86 cosh B, cos ﬁe( — '%M) — (sinh B8, cos B, + cosh f, sin B,) ( - SZQ )}

Ay = /3% { — p.(sinh 8, cos f, — cosh 5, sin f3,) ( - %) + cosh f8, cos ﬁe( - %Q)} (%)
As =cosh2f, + cos2f,

To solve Eq. (21), we firstly derive the relations of 4,; and B,; (i = 1,2,...,6), which can be obtained by
substituting Eq. (21) into the first formulation of Eq. (10):

Aal = KlBaZa Aa3 = KZBa47 AaS = K3Ba6 (36)
Ap = KiBa, Awu=K)Bs, A= —K3Bgs
where
T /3152
Ki=pKo=55—">"5—
2, o)
T'h BB
Ky =Bk =5 5—5"—— (37)
2 B = (B, = B
T'n BB
Ky =BiKso =5 555
2 B+ (B — Bow)

Substituting the boundary conditions at ¢ = 0 shown in Eq. (27) into Eq. (21), and considering the relations
shown in Eq. (36), we have:
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U, = By (K sinh & — K3 sin f5¢) + Ba4(K2 sinh 8, — K3 sin f35¢)
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W, = By (cosh B, & — cos f§5¢) + Buy(cosh & — cos f5¢) (38)
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Ky = B3 (K30 + Kap) Ko — B3 (K30 + K1o) (39)

~ Bi(Kip — Ky)' 2T B, (K> — Kio)

Considering the boundary conditions at ¢ = 1 and the expression of the shear stress shown in Eq. (9), we
can obtain the equations for solving the integration constants B, B, and B, in which the unknown
internal forces of the host beam at the intersection are included:

Boo(BiKio cosh B — 3K cos Bs) + Bas(B3Kzo cosh fy — B3Kao cos 532
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Integration constants B,,, B,4 and B,s are solved by Eq. (40):
1 ey — & ; &
Ba = |45k (=) + 40 (- )
1 ey — & em &
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4AHN42+M42+Q42 (42)
1 ey — & ey Y
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where 4, is the determinant value of the coefficient matrix of Eq. (40) and 4y, (N = N, M, Q;k = 2,4,5) are
determinant values of the corresponding cofactors.

3.4. Exact dynamic solutions of the smart beam

The motion equations of the smart beam we have solved still include the unknown internal forces of the
host beam at the intersection. To determine the unknowns, we consider the continuity and smooth con-
ditions at the intersection:

dWu(1)  dWuu(0)

Un(1) = Uy (0),  Wu(1) = Wi (0), @ de

(43)
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where

Un(1) = Ua(1) + Us(1), W (1) = Wa(1) + Wi(1), . + (44)

The expressions of the intersectional displacements can be found by Egs. (32), (34) and (38), which are
given in Appendix B. Substituting Egs. (B.1)—(B.3) into the continuity and smooth equations (43), we have:

biien + bioey + bizeg = creép + Cirérp
byren + bnéy + bazeg = Cre8p + Copep (45)
bajey + bxney + bizeg = €306, + C3pep

The coefficients in Eq. (45) are given in Appendix B.

The unknown forces at the intersection can be solved by Eq. (45). By substituting the solved unknown
forces into Egs. (32), (34) and (38), the integration constants are determined, and therefore the steady state
motions of the smart beam are found.

We have mentioned that the proper transformations may be constructed to change the problem of
homogeneous differential equations with the inhomogeneous boundary conditions into that of inhomo-
geneous differential equations with the homogeneous boundary conditions. In doing so, by having the
coefficients of characteristic functions be unlimited, the natural frequencies are obtained, and the charac-
teristic functions are the normal mode shapes.

Based on the solved steady state motions, the frequency spectra can be easily plotted. When the fre-
quency approaches to the resonant frequency, the solution is divergent and thus the natural frequency is
found. The mode shape of each order can be accurately obtained by selecting the frequency very close to the
resonant frequency.

3.5. Exact dynamic solutions tailored to a bimorph bender

The obtained solutions of the cantilever beam with a partially bonded PZT patch to the fixed end can be
tailored to directly solve the PZT double cantilever beam (DCB). When the DCB undergoes pure bending
deformation, it is a PZT bimorph bender, which has been widely used in the area of micro-controls. The
boundary conditions of the DCB can be expressed:

dU; 1
é:OUYZO éilId—éieNq+8pv:§(8Nh+8N1+8ph+8p1)
a*w, 1
W, =0 dsz = —&u _z(th — &) (40)
daw; A/ L
0 e e
du, 1
¢=0:U,=0 521Id—£=8Na+8pa:§(8Nh—8N1+3ph—8p1)
a*w, 1
W,=0 e =~y = — 5 (e + ean1) (47)
dw, &w, 61, 1
ac ~° 4 B e Tpletre)
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In the above equations:

_ Eek _ Nnk _ 12Mnk
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Th
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where ¢, is the induced strain; Ny, M, and Q. (k =s,a,1,h) are the amplitudes of non-dimensional
applied axial forces, bending moments and the shear forces at the free ends.

Substituting Egs. (46) and (47) into Egs. (35) and (40) respectively, we have the DCB dynamic solutions
shown in Egs. (34) and (38). When the pure bending deformation is considered, they become the solutions
of a bimorph bender.

In the static state of the DCB, dynamic equations (7)—(10) are simplified into the following related
equilibrium equations and constitutive relations:

(k=s,a,1,h) (48)
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2
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Eprt d*w, m ((du, 1 dPw,
20 ey =0
12 q& Ty d§+2 dé?
By integrating differential equations (49) and (50) with the boundary conditions given in Eq. (46), the
solutions of u,, w, and o, are given by:

Us = (SNS + Sps)é

wy = By sinh & sin B, 4+ By (cosh B,.E sin f,.& — sinh f,.& cos f5,,€) (53)

Oy = 20 g,Wy

where
b= e g, V2
a E,,h}’é’ es 2 a
B = —2p,ems cosh f, cos f,, + g (sinh f,, cos f,, + cosh f, sin f3,,) (54)
) B, (cosh 26, + cos 28,,)
B, — Posems(sinh B, cos f,; — cosh 5, sin f,;) — &g, cosh f5,, cos f,
” B2 (cosh 2B, + cos28,,)

The non-dimensional shear stress can be determined by solving the differential equations (51) and (52) with
the boundary conditions expressed as:
E=0:17,=0

dr,
ézl.dé

(55)

7 ) d’z,
b

2
=2ry (SNa + €ea — ESMa dfz - :Brfn = — Tl a8Qa
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The non-dimensional shear stress is then found to be:

Ty = (ANel —|—AM] +AQ1) sinh ﬁré +AQ2(COSh ﬁré — 1) (56)
where
1 3 8r
— 2 - — Ta
ﬁT \/ : (Enhr}z, +Enhr£> \/Enhri
Zrm(SNQ +é a) TnVaéMa (57)
Ayt = 2 Na T opa) g = S HTTaOMe
el B.coshp, = M B. cosh B,
rhrragQa rhrm‘gQa
Ao = [ thf,, Agp =— E

For the PZT bimorph bender, only the solutions of Eqgs. (51) and (52) need to be considered. In this case,
the actuated forces in one of the PZTs, e.g., in the one referred to as the host beam, can be found by
utilizing the equilibrium equations, and they are given by:

Ny = ﬁl(ANel + A1 + Agr)(cosh f.& — cosh ) + ﬁiAQZ(Sinh B.¢ —sinh B.) +Ap (& — 1) (58)
M, = —% ﬁl(ANel + A1 + Agi)(cosh f.¢ — cosh B.) + ﬁiAQ2(5inh B.&—sinh ) +A4p(E—1)
(59)

As the shear stress concentration occurs at the free end, the actuated axial force and bending moment attain
their asymptotes in the region distant from the free end. It can also be shown that, the equivalent actuated
forces obtained in Part II of the exact static solutions (Luo and Tong, 2002a,b) are very close to the
maximum values given in Egs. (58) and (59). The equivalent forces in dimensional form are:

Eh ER?
Neq :?8&17 Meq :F

Using the Euler—Bernoulli beam theory (Timoshenko and Gere, 1972), we can easily derive the actuated
rotation angle and deflection at the free end and thus the relations between the angle or deflection and the
voltage are:

Eea (60)

3€3|Lp
4ER? ’
The relations given in Eq. (61) are the same as those formulated by Smits et al. (1991) and Wang and Cross

(1999). The other matched components in the constitutive relation matrix can also be derived using the
same procedures.

2
3@31Lp

k14 = k41 = k24 = k42 = W (61)

4. Exact solutions of the shear lag models

Crawley and de Luis (1987) developed a shear lag model for a smart beam, in which the PZT patches
were modeled as rods; the finite thickness adhesive was assumed to transfer shear stresses only, and the host
beam was assumed to deform in extension or in pure bending only. Im and Atluri (1989) extended this static
model to account for a more general state of external loadings on the host beam. Crawley and Anderson
(1990) compared two analytical models of the static interaction between a host beam and the symmetrically
bonded PZT actuators. The second model was a refinement of the first one developed by Crawley and
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de Luis (1987), which accounted for both extension and bending of both the PZT patches and the host
beam while retaining the assumption of the pure shear stress state in the adhesive.

Crawley and de Luis (1987) investigated the dynamic influence of the piezoelectric actuators using the
shear stress derived from the static analysis as the exciting function, or based on the equivalent forces. On
the basis of their equivalent forces obtained through the extended static analysis, Crawley and Anderson
(1990) also conducted the dynamic analysis using their two models and similar results were obtained for the
case when the PZT patches are much thinner than the host beam; Im and Atluri (1989) also formulated
their equivalent forces, which were also used for investigating dynamic controls (Shi and Atluri, 1990).

We have derived the exact dynamic solutions for PZT smart beams including peel stresses. In our static
analysis (Luo and Tong, 2002a,b), it was shown that the finite thickness adhesive with the shear and peel
stresses provided more accurate results, especially for the flexible structures; the errors predicted by the
shear lag model may be as high as up to 90%. In the dynamic analysis, we will also compare the present
dynamic model including peel stresses (PSM) with the shear lag model. To do so, we first derive the exact
dynamic solutions for the dynamic model with only the shear stress in the adhesive layer.

Two dynamic models, referred to as a shear lag rod model (SLRM) and shear lag beam model (SLBM),
are presented for the smart beam shown in Fig. 1 in this section, and the exact dynamic solutions to a smart
beam with different substrates will be derived in Appendix A. The present exact solutions to shear lag
models are different from the approximate solutions given by Crawley and de Luis (1987), and Crawley and
Anderson (1990). Motions of PZT patches are considered in our formulations.

4.1. Shear lag beam model

In Egs. (2)—(7), setting g, = 0, we can obtain the related equations for the shear lag beam model. Eq. (8)
becomes:

Qu, Pu,
Enhrﬁ uzb = my b
o¢ or, (62)
Enhrz a4wsb o 62M}Sb

2 off Mo

Egs. (9) and (10) and the solutions are the same as those of the present model including peel stresses.
Solutions to Eq. (62) are:

Usb :Asbl sin ﬁslé"_Ast COS ﬁxl (63)
Wi = (B sinh f,& 4 By, cosh f,E 4+ By sin f,E + Bgs cos f5,E)

Substituting the boundary conditions shown in Eq. (26) into (63), we have:
sin ﬁsl f 1

Uy = —(ey + ¢
i ﬁsl Cos ﬂsl 2( N P) (64)
Awpr , . . g .
Wop =~ (sinh f,& —sin &) -+~ (cosh ¢ — cos )
sb sb

where
Agp = 2(cosh §,cos B, + 1)

A1 = ﬁi; { — B,(sinh B, — sin ﬁh)( — %w) + (cosh B8, + cosﬂh)( — %Qﬂ (65)

Ay = ﬁiz [ﬁh(cosh B + cos ﬂ,,)( - %M> — (sinh B, + sin ﬁh)( - %Qﬂ
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At the intersection between Sections I and II of the host beam, Uy, (1) is the same as that of PSM. The
deflection and the related slope are:

ey py sinh B, sin B, + eo(sinh f, cos 5, — cosh f3, sin f3;,)
28 (cosh 3, cos B, + 1)
dWy (1) —eypy(sinh B, cos B, + cosh B, sin f8,) + & sinh f3, sin B,

d¢ 282 (cosh 3, cos B, + 1)

Wa(1) = —

(66)

Replacing the related items of b,y, ba3, b3, and b33 in Egs. (B.8) and (B.9) with the derived expressions shown
in Eq. (66), we have the equation with the same form as that of Eq. (45), and then the unknown forces at the
intersection between Sections I and II are solved. Substituting the obtained forces at the intersection into
Egs. (32), (64) and (38), we find the steady state motions for the shear lag beam model, and the numerical
comparisons will be presented in Part II of this work.

We can show that, except for the area near the free PZT edge, the peel stress predicted by the present
model is almost zero, and thus that w,;, = w,; holds true in the area distant to the PZT edge. However, the
shear lag beam model gives:

Wah = Wyt + i:bl (sinh §,& — sin B,&) + i“sbz (cosh 3,& — cos 3,€) | sin Q, (67)
sb

sb

The relation of w,;, = w,; is true only in static state.
4.2. Shear lag rod model

The formulation procedures for SLRM are similar to those of PSM. Only the equations that are different
from those of the previous formulation are given. In SLRM, Egs. (2) and (3) are simplified as follows:

a]an +1,=m a Upi
aé n n at,zl (68)
” a]Vnh T =m 62Mnh r ath - m azwnh aMnh Q 0
h af n — My 61‘3 ) h 66 — My at’% ) aé nh —
The constitutive equation of the adhesive is given by:
Ty = Feg | (Uph — Up1) + s Oy (69)
n — "ta nh nl 2 @é
The motion equations can be simplified as:
a Un) p awnh 62unl
Enhrh 65 +rra|:(unhunl) 2 66 :| =m, @tﬁ
6 Unh p 6th 62unh
Enh h ayz — Vg |:(unh _unl) +3 aé :| - na—tizl (70)
_ nhrh a Whah + Vgl 6unh N aMnl Q a Whh o 62"Vnh
12 o 2 of o 2 982 | " o
Egs. (8) and (10) become:
a s¥ 62 sr
Ep? s — gy, (71)

o o
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) %u,, 7y 0wy, %u,,
Enhrh agz _zrra uar+§ aé :mnv

> 72
Er} 3wy, N vy [ Oug ¥y O*We O*W,y (72)
- Vea — - =m,—;
12 p¢t 4\ ¢ 2 & o
It is noted that, 20, = O, 2M,, = M,;, and 2w, = w,;, in this case.
The characteristic equation (18) can be rewritten as:
2+ (@ — o)A, — 5 B, = 0
(73)

Thop o 2 4 Th 2 2
Zﬁ%Aa— o — gocaﬁ +o ||B,=0

The condition for obtaining non-trivial solutions of 4, and B, is the same as that of the characteristic
equation (19) and the other formulations are also similar to the previous demonstrations, except for:

ﬁ _ \/Erhoca
aw 4OCW 6r ) (74)
. 2 Ta h . _ 2 6reg 7
Kﬁsr‘i - ﬁsri |:ﬁsr[ - Enh”?, (KiO + 3):| (l - 17 2)7 K/}sr3 - ﬁxr3 |:ﬂxr3 - En;,rz (K30 - Eh):|

As f,, for SLRM is different, the eigenvalues S, (i = 1,2,3) evaluated from Eq. (19) are different from
those of PSM. Using the same procedure, we can solve U,,., U, and W,., which are expressed in forms of
Egs. (34) and (38), except for replacing f3; with 8, (i = 1,2, 3) respectively.

At the intersection between Sections I and II of the host beam,

A1) _ , d7 (1)
¢ 7 d¢

VV,,;,(I) = 2%1‘(1)7 (75)
The intersectional forces can still be found by using Eq. (45), except for setting W, to be zero in Egs. (B.7)-
(B.12). Substituting the found intersectional forces into Egs. (32), (34) and (38), we can obtain the exact
solutions to the shear lag rod model.

Following the similar method, dynamic solutions of the composite beam with different materials
and geometric parameters can be analytically solved for the shear lag rod model, which are given in Ap-
pendix A.

5. Discussion

Using the same solution procedure, Egs. (14), (15), (22) and (23) can also be solved, and then the exact
solutions related to very high frequency for the model of Fig. 1 are obtained. Due to space limitation, they
are not given in details here.

In Eq. (19), when o = «,, or (f, — f>,) = 0, it becomes:

wu

2= 1B+ (B = Bo )14 — (L + BouB2) = 0 (76)

The roots of Eq. (76) are explicitly given as:

=y { B+ B = B I B B+ 48+ R | )
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Noting that,

VIB, + (B — B + 48, + BB > B+ (B — o)) (78)

It is evident that one root of Eq. (76) is positive real number and the other one negative real number.
Therefore, the solution can be expressed as given in Eq. (22).

There is at least one real number in Eq. (19). If the other two roots were conjugate complex numbers, the
structural vibrations would not be excited. It is drawn that three roots of Eq. (19) are all real numbers, and
thus the equation can be rewritten as:

(A=) (A=1)(A=23) =0, or 1*— A+l 4 23)A% + (Jidy + Jods + J3A) A — Adads =0 (79)
By comparing Eq. (19) with (79), we have the following formulations.

1. 41 > 0:
(a) When o < a,, 4,43 < 0; one of roots A, and A3 is positive and the other negative.
(b) When o > a,, 4,43 > 0; either both roots 4, and /; are positive or both negative. If both roots are
positive, there will be no vibration. Therefore, both roots are negative.
2. 4 <O
(a) When o < o4, 4,43 > 0; either both roots 4, and Z; are positive or both negative. If both roots are
negative, there will be a contradiction to the solutions given in Eq. (22). Therefore, both roots are
positive.
(b) When o > a,, 4,43 < 0; one of roots 4, and 13 is positive and the other negative.

In summary, when w < o,, there are two positive roots and one negative root for the characteristic
equation (19), shown in cases 1(a) and 2(a), and the solutions are given by Eq. (21).

When o > o,, there are two negative roots and one positive root, shown in cases 1(b) and 2(b), and the
solutions are given by Eq. (23).

6. Conclusion

On the basis of the Euler—Bernoulli beam theory, piezoelectric relations and the model of adhesive joints
developed by Goland and Reissner (1944), the partial differential forms of the motion equations of the
smart beam are derived. The partial differential equations are then dissolved into two independent groups
of symmetric and anti-symmetric equations using the proper transformation, and then the exact dynamic
solutions to piezoelectric smart beams including peel stresses are analytically obtained by assuming the
harmonic motions. The exact solutions are applied to the cantilever beam with a bonded PZT patch to the
clamped end, whose frequency spectra, resonant frequencies, normal mode shapes, and harmonic responses
of the shear and peel stresses can be investigated. Dynamic solutions of the PZT bimorph bender are also
discussed briefly, and the constitutive relations derived for the applied voltage agree with the existing
expressions.
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Appendix A. Exact dynamic solutions for the PZT smart beam with different adherends using the shear lag rod
model

The material properties for both the PZT patches and the host beam are still assumed to be the same,
whereas the assumption of same geometry is abandoned.

In addition to the non-dimensional parameters defined in Eq. (1), the following parameters are intro-
duced:

m]h
G,

re= My =m0y, mr = (A.1)

h
L,
where ¢, is the thickness of the PZT patch, m; (= pt,) is the density of the PZT patch, mass per unit length.
It can be derived that:

1
my = ﬂ’/nn =My (A2)
T Ru

where R;, is the thickness ratio of the host beam to the PZT patch.
A.1. A host beam with one bonded PZT patch

As shown in Fig. 3, the PZT dynamic equation is:

aan azu,,l
T ac + T :mma—t’% (A.3)
The constitutive relation is given by:
_ Oun | enVi(t)
N = Eyr o G (A4)

The dynamic equations of the host beam and the constitutive relations of the adhesive are the same as those
given in Eqgs. (68) and (69).
The second and third formulations of Eq. (70) are not changed and the first one of Eq. (70) becomes:

%u, 7y Ow, rn oMu,
E i ?21 + Fu [(un;, — Up) +§h agh} = émn at}%l (A.5)
The motion equations corresponding to Egs. (71) and (72) can be derived:
o*u %u
2 sro ST
Enhrha—é’z = I’)’lna—t’3 (A6)
u,, 7, Ow %u
2 ar ar _ ar
Enhrha—éz_rra(1+Rht)<uar+3 oz ) —mna—t5 A7)
i Enhrz a4war +r (1 +R ) "'n auar + r_h azwar —m azwar '
12 pgt "M +R)\0E T2 o2 ) e

where 2u,, = uy;, + 1,1 /Ry, and 2N, = N,j, + N,1 /Ry, Other definitions are the same as those of the shear lag
rod model with identical adherends, and the host beam extension is solved: u,, = 2(uy + ugs) /(1 + Rp).
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> x

— @
————
— ()

Mh —— Mh+ th
Nh:/‘ ‘ \/ =Nh + th
\Qh‘ lQh+ dQ, (c)
dx

Fig. 3. A shear lag rod model for a host beam with one PZT patch. (a) PZT infinitesimal element, (b) adhesive layer and (c) host beam
infinitesimal element.

The characteristic equation can also be expressed by Eq. (19) except:

rra(l +Rht) VpOlg
a = _— d = A.8
W=\ and B, TR (A8)

Using the same solution procedure, solutions of Uy, U, and W,, can be obtained as given in Egs. (34) and
(38) with f3,, 8,, and f3; being replaced by the new solved eigenvalues.

A.2. A host beam with two symmetrically bonded PZT patches
When the two PZT patches are symmetrically bonded to the host beam as shown in Fig. 4, we can

develop the following formulations for the shear lag rod model.
The non-dimensional dynamic equilibrium equations are:

ON,ui r o Quy ON,2 r o Qup
7 Tn :_m”—7 7 — Ty = — My
T (A9)
a]Vnh + 62unh ath 62"Vnh a]\4nh Tnl + Tn2 Q 0 '
7, — T+ T =m,—, 7 =m, , p — O =
"oE P e o2 "To¢ o2 RE 2 "
The constitutive relations of the adhesives are given by:
Wy ow,
Tnl = Ta (unh - unl) +2_h ;Vél :| 9 T2 = Vg |:(u"2 - unh) —ﬁ—% g}ih (Alo)

The dynamic equilibrium equations and the constitutive relations can be transferred into two sets of the
independent equations that can be separately solved.

Case 1: Extensional motion of the host beam
When the host beam undergoes extensional motion only, we have the following set of equations by
introducing the transforming parameters:

2Nps = 1Vpl +Nn27 2ups = Up) + Up, 2Tps = Tnl — Tn2, 2Vps = Vl + I/Z (All)



L. Tong, Q. Luo | International Journal of Solids and Structures 40 (2003) 47894812 4807

> X
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Nh:( ‘T ‘ 3 » NytdN, (c)
9, ————— 949,
«— T2
——,
-
Nye| __ Ny+dN,
(e
v . dx |
z

Fig. 4. A shear lag rod model for a host beam with two symmetrically bonded PZT patches. (a) PZT1 infinitesimal element,
(b) adhesive layer 1, (c) host beam infinitesimal element, (d) adhesive layer 2 and (¢) PZT2 infinitesimal element.

The dynamic equilibrium equations are:

NpS ry azl/lps aN,,h azu,,h
rha—é""‘cps:amna—tﬁa rha—é_z‘[ps:mn atﬁ (Alz)
The constitutive relations are given by:
Oup, €31V Oty
Nps :Enhrl ag + Gallj ) Nnh :Enhrh¥7 Tps = rm(unh _ups) (A13)

The decoupled dynamic equations (A.15) and (A.16) are finally obtained by substituting Eq. (A.13) into
(A.12) and introducing the following relations:

2uss = Uy + 2ups/Rhta Zusa = Upp — Ups, Tps = zrrausa (A14)
%u *u
2 ss 55
Enhrh 652 = mna—tﬁ (A15)
d%uy, 0%uy,
Eury o2 (2 4 Rus)reathsa = Ly (A.16)

Egs. (A.15) and (A.16) can be separately solved, and then the extensional motions are obtained by referring
to the relations shown in Egs. (A.11) and (A.14). Incorporating with dynamic solutions of the host beam
where no PZT patches are bonded and considering the continuity condition, we can obtain the extensional
motion of the host beam. The other quantities of the smart beam can also be readily obtained following the
same procedure as that of solutions to the present PSM model.

When both PZTs are used as actuators, the extensional motion can be achieved by applying a voltage
Vi(t,) of the same magnitude to both PZT patches so that the electric fields in both PZTs are in the same
direction at any time.
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Case 2: Flexural motion of the host beam
When the host beam undergoes the flexural motion only, the following transforming parameters are
used:

2Npa = 1Vpl _Nn27 zupa = Up] — Up, 2Tpa =T+ Tn2, 2I/pa = Vl - VZ (A17)
The dynamic equations are:
ON,, 0%ty
7 g =,
o "o (A.18)
ath a th aMnh 41 Q 0
4 =m, 5 a =
hoe or oe o B
and the constitutive relations are given by:
Ou 631V 1 62w h Iy ow, h
Na:En - Mn :*_En — a — Fwa| — Ky . A.19
P h'h aé + h 12 hrh 662 ’ TP r 2 aé ( )
The motions equations are then transferred into:
6 Upg 7, Ow, %u,,
Enhr}, +Rhtrra<_upa+_h h) = nmy 217
Gl 2 0& o (A.20)
Enhrh a Whah R rp aupa T'h a Whh 62M}nh .
- VFiam— | — ~ = nmy
12 et MR, 0 T2 o2 e
The characteristic equation is expressible by Eq. (19) except for:
rtht Yty
oy =4/—— and f,=——— A.21
mr B Oy V/ 2Rhl ( )

When both PZTs are used as actuators, the flexural motion can be achieved by applying a voltage V(z,) of
the same magnitude but opposite phase to PZT1 and PZT2 so that the electric fields in both PZTs are
opposite in direction at any time.

In this case, different equations from those of the exact dynamic solutions including peel stresses are
given as follows.

Eq. (37) becomes:

2
K= ki = =5 éﬁ— 7
K, = ﬁszo = 2 % (A.22)
o ki == (ﬁﬁﬂ B
Egs. (41) and (42) are rewritten as:
K= i+ o (ku =)
Kp =p, ﬂ% + 23:;2 (Kzo - %h) (A.23)
Ky = fs /))2 Ilff:r: (K3o +%h)
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Bﬂ-j;MquJ+-AMx ) + Aa(—t0)
B = ALa [Ana(ey) + Ava(—enr) + Adoa(—e0)] (A.24)
Bus = [Ans(ey) + Aus(—t) + Aos(~20)]

IS}

Eqgs. (43) and (44) are degenerated as:

A1) dWm(0)

n 1) = n 5 - A2
Wa(1) = Won(0), ) — S (A25)
Eq. (45) is simplified as
byey + brzeg = 208, + Copep } (A.26)
byrey + b3zeg = 308, + Capep .

and the related coefficients can be simplified accordingly.

The partial differential form of motion equations can be obtained for the peel stress model with different
cross sections and two symmetric PZT patches. Following the same procedure to that of the identical
composite smart beam and performing the similar transformation to that in the static analysis for two
symmetric PZT patches, the equations are simplified into two sets of independent equations, of which one is
an 8-order differential equation. By assuming the harmonic motion, a four order polynomial equation can
be obtained and analytically solved. However, analysis of the solution forms and the determinations of the
integration constants are too complicated to conduct practically.

Appendix B. The intersectional displacements of the host beam and the coefficients of Eq. (45)
The expressions for the intersectional displacements of the host beam are:

&y €OS B0, — &
ﬁsl Sin ﬁsl(xl’
1
W (0) = — B, &y sinh B, o, sin B, o, +
m(0) ,Bfl(coshﬂhacpcosﬁhap - 1)[ Prew Puay sin B,y

U (0) =

&o(sinh B,a, cos B0, — cosh B, sin f,a,) — ep(sinh B0, — sin f,a,)] (B.1)
dW,.m(0) 1 . :
= &y (sinh f,a, cos f,a, + cosh o, sin 0
di ﬂi(cosh ﬁhap cOS ﬁhap - 1) [ﬁh M( ﬁh P ﬁh P ﬁh /4 ﬁh P)
+¢p sinh fB,a, sin f5,0, + ep(cosh f,0, — cos f,0,)]
(8N + 817) tan ﬁvl
Uv,(1l)=—=">—-+=
( ) zﬁsl
—p.en(cosh2f, —cos2f,) + ep(sinh 25, — sin 2f3,

48 (cosh 2, + cos2p,)
dwi(1)  —2p,ey(sinh2p, 4 sin2f,) + eo(cosh 2f3, — cos 23,)
¢ 42 (cosh2p, + cos2,)
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Uu(1) = lea {[An2fia(1) + Anafua(1) + Ansfus(D)](en — &) — [Auafia(1) + Apafua(1)
+Ausfus(Dlen — [A02fia(1) + Apafua(1) + Agsfus(1)]eo}

(1) = 3 (A1) + Asfus(D) + ysfus(Dl oy = ) ~ usfa1) + Ausf(1)
+Ausfus(Dewr — [Ag2fia(1) + doafus(1) + Agsfius(1)]eg}

T e (uafi1) + Ayafa(1) + Aol — )~ (uafin1) + o)
+dusas(Dlow — [Aoafia1) + Agafia(1) + Aosfis(V]so}

where

fi2(1) = K sinh f; — K; sin B; }

fua(1) = K, sinh f, — K sin B

Jfus(1) = K K5 cosh B, + K»K3; cosh 8, — K5 cos f3,

Jfuwa(1) = cosh 8, — cos fi;
Jfuws(1) = K3y sinh 8, 4+ K3, sinh f3, 4 sin f3;

Jar(1) = By sinh B + By sin f; }

fu2(1) = cosh 8, — cos fis }

Jaa(1) = B, sinh B, + By sin f;
de(l) = BIK:‘” COSh ﬁl + ﬁ2K32 cosh BZ + ﬁ3 COS ﬂ3

The coefficients of Eq. (45) are given by:

ctan fi o,  tanf 1

by =~ L% TR T A1)+ Mafs(1) + s (1)
bia = = 5 A1) + A ia1) + Dsis(1)
byy = *ziAa Uonfir(1) + Agafun(1) + Agsfis(D)]
bar = 5 vafin(1) + Avafa(1) + s fus(1)])
_ sinhBa,sin Ba, (cosh 2B, — cos2p,)
27 B2(cosh B0, cos fa, — 1) 4f(cosh2p, + cos 2,)
5 Auafia(1) + Auafua(1) + dusfos (1)
oy — S99 08 i3y — cosh iy in ity (sinh 2§, —sin 28.)
B3 (cosh B, cos iy, — 1) 4% (cosh 28, + cos 2p,)
— 55 Morfa1) + Aoufus(1) + dosfos 1)
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1 .
by = A [Anafar (1) + Anafaa(1) + Aysfas(1)]
bo — sinh B, o, cos B0, + cosh B0, sin fo,  (sinh 2B, + sin28,)
2 B (cosh B,a, cos B, — 1) 2B,(cosh 2B, 4+ cos 2,)
1
YN [Avafar(1) + Aaafia(1) + Ausfas(1)] (B.9)
bew — — sinh f,a, sin f3,a, (cosh2f, — cos2f,)
» B (cosh B0, cos B, — 1) 4f%(cosh 2B, + cos2B,)
1
— 5 Aorfae(1) + Agifus(l) + Agsfas(1)]
tan 1
ere = =208 L o fia(1) + Avafua(1) + Avsfis(1)]
2ﬂs‘1 2Aa
T (B.10)
ar=- ﬁsl sin ﬁslap
1
€2 =57 [Anafua (1) + Avafua(1) + Ays fus(1)]
sinh 0, — sin %, (B.11)
C = —
» B (cosh B,a, cos B, — 1)
1 )
Cie = 5 [Anofir (1) 4 Anafaa(1) + Ansfas(1)]
24a B.12
cosh B, — cos B, (B.12)
C =
= B(cosh B, cos By, — 1)
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